

NPS-CS-08-001

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

Approved for public release; distribution is unlimited

Prepared for: National Science Foundation & DARPA

 3701 N. Fairfax Drive
 Arlington, VA 22203-1714

 Innovations for Requirements Engineering

 by

Luqi & C. Martell

 01 January 2008

 i

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari
President Provost

This report was prepared for National Science Foundation, DARPA, NPS
and funded by National Science Foundation and DARPA.

Reproduction of all or part of this report is authorized

This report was prepared by:

____________ ___________________
Luqi Craig Martell
Professor Associate Professor
Computer Science Computer Science

Reviewed by: Released by:

__________________ _______________________
Peter Denning Dan C. Boger
Chair of Computer Science Interim Associate Provost and

 Dean of Research

 ii

 iii

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
January 2008

3. REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE:
 Innovations for Requirements Engineering
6. AUTHOR(S)
 Luqi and Craig Martell

5. FUNDING NUMBERS
DARPA
07-W673

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Naval Postgraduate School
 Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER NPS-CS-08-001

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 DARPA
 3701 N. FAIRFAX DRIVE
 ARLINGTON, VA. 22203-1714

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this report are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
 A

13. ABSTRACT (maximum 200 words)
The objective of the 15 Monterey workshops since 1992 has been to “increase the practical impact of the formal methods in
computer-aided software development”. The workshops seek to improve software practice via the application of engineering
theory and to encourage development of engineering theory that is well suited for this purpose.

The 2007 workshop focused on requirements, particularly the process of transforming vague and uncoordinated needs of
individual stakeholders into consistent and well-defined requirements that are suitable for supporting automated and computer-
aided methods for engineering subtasks in the subsequent development process.

Innovations are effective technology transfers of sound inventions. The workshop case study was targeted at identification and
assessment of sound inventions of technology that can be used to support innovations in requirement engineering. For example,
we wanted to gain a better understanding about how to deal with natural language as the vehicle from which we derive
system/software requirements, how to use intelligent agents as entities to facilitate semi-automatic requirements-documentation
analysis, and how to build automatic systems to aid in requirements/specifications elicitation. The overall aim was to exchange
ideas for continued research in the intersection of these two areas and to reduce the gap between theory and practice.

15. NUMBER OF
PAGES

204

14. SUBJECT TERMS
Requirements Engineering, Software Engineering, National Language Processing, Requirements
Document Processing, System Engineering

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 iv

 v

ABSTRACT

The objective of the 15 Monterey workshops since 1992 has been to “increase the

practical impact of the formal methods in computer-aided software development”. The

workshops seek to improve software practice via the application of engineering theory

and to encourage development of engineering theory that is well suited for this purpose.

The 2007 workshop focused on requirements, particularly the process of

transforming vague and uncoordinated needs of individual stakeholders into consistent

and well-defined requirements that are suitable for supporting automated and computer-

aided methods for engineering subtasks in the subsequent development process.

Innovations are effective technology transfers of sound inventions. The workshop

case study was targeted at identification and assessment of sound inventions of

technology that can be used to support innovations in requirement engineering. For

example, we wanted to gain a better understanding about how to deal with natural

language as the vehicle from which we derive system/software requirements, how to use

intelligent agents as entities to facilitate semi-automatic requirements-documentation

analysis, and how to build automatic systems to aid in requirements/specifications

elicitation. The overall aim was to exchange ideas for continued research in the

intersection of these two areas and to reduce the gap between theory and practice.

 vi

 vii

Monterey Workshop 2007

PRE-PROCEEDINGS of the
14th Monterey Workshop on
Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

September 10-13, 2007, Monterey, CA, USA

Workshop Chairs:
Luqi Naval Postgraduate School, Monterey, California, USA
Fabrice Kordon University of Pierre & Marie Curie, Paris, France

Workshop Website: http://fabrice.kordon.free.fr/Monterey2007/
Workshop mail: montereyworkshop@gmail.com

Sponsored by DARPA, NSF, NPS

 viii

Steering Committee
David Hislop - Army Research Office, USA
Luqi - Naval Postgraduate School, Monterey, California, USA
Zohar Manna - Stanford University, California, USA
Manfred Broy - Technical University Munich, Germany
Egidio Astesiano - University of Genova, Italy
Fabrice Kordon - University of Pierre & Marie Curie, Paris, France
Janos Sztipanovits - Vanderbilt University, Nashville, Tennessee, USA
Hermann Kopetz - Vienna University of Technology, Vienna, Austria

Program Co-Chairs
Craig Martell - Naval Postgraduate School Monterey, USA
Barbara Paech - University of Heidelberg, Germany

Program Committee
Daniel M. Berry - University Waterloo, Canada
Christine Choppy - University Paris XIII, France
Stephen Clark - Oxford University, UK
Lori A. Clarke - University of Massachusetts, USA
Rance Cleveland - University of Maryland, USA
Vincenzo Gervasi - University of Pisa, Italy
Aravind Joshi - University of Pennsylvania, USA
Kane Kim - University of California, Irvine, USA
Leonid Kof -Technical University of Munich, Germany
Fabrice Kordon - University P. & M. Curie, France
Bernd J. Krämer, FernUniversität Hagen, Germany
Mitch Marcus - University of Pennsylvania, USA
Bashar A. Nuseibeh - The Open University, UK
Manuel Rodriguez - National Research Council, USA
Sol Shatz - University of Illinois at Chicago, USA
Chen-Yu Phillip Sheu - University of California, Irvine, USA

Local Committee
Craig Martell - Naval Postgraduate School Monterey, USA

Compilation of the Pre-Proceedings
Willi Springer - University of Heidelberg, Germany

Support Staff
Daniel Cook - Naval Postgraduate School Monterey, USA
Melissa Fan - Naval Postgraduate School Monterey, USA
Kathleen Farrell - Naval Postgraduate School Monterey, USA
Christine Kays - Naval Postgraduate School Monterey, USA
Valerie Ramirez - Naval Postgraduate School Monterey, USA
James Stapleton - Naval Postgraduate School Monterey, USA
Keisha Williamson - Naval Postgraduate School Monterey, USA

1

Table of Contents:

Tuesday 11 September

Workshop Introduction: Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design
Luqi, Fabrice Kordon 5

Keynote: Ambiguity in Natural Language Requirements Documents
Daniel M. Berry 11

Discussion of Some Past and Current Approaches to Specification and to Requirements
Analyses
Martin Feather 13

Key factors of a successful agile requirements analysis in the realm of overhauling an
industrial automation system
Thomas Aschauer, Gerd Dauenhauer, Patricia Derler, Wolfgang Pree, Christoph Steindl 21

A Logic for Regulatory Conformance Checking: The Problem of References to Other Laws
Nikhil Dinesh, Aravind Joshi, Insup Lee, Oleg Sokolsky 29

Wednesday 12 September

Keynote: Some Recent Developments in Natural Language Processing
Aravind Joshi 41

On the Identification of Goals in Stakeholders Dialogs
Leonid Kof 43

Profiling and Tracing Stakeholder Needs
Pete Sawyer, Ricardo Gacitua, Andrew Stone 49

A Case for ViewPoints and Documents
Michael Goedicke 59

2

Thursday 13 September

Keynote: Getting the Details Right
Lori Clarke 63

Model-Driven Prototyping Based Requirements Elicitation
Jicheng Fu, Farokh Bastani, I-Ling Yen 65

Improving the Quality of Requirements Specifications via Automatically Creating Object-
Oriented Models
Daniel Popescu, Spencer Rugaber, Nenad Medvidovic, Daniel M. Berry 71

Position Papers

Environment Models for Specifying Functional and Non-Functional Requirements for
Reactive Systems
Mikhail Auguston 89

Innovations on Natural Language Document Processing for Requirements Engineering
Valdis A. Berzins, Craig H. Martell, Luqi, Vladimir V. Ivanchenko 99

A Learners' Quanta Based Framework for Identification of Requirements and Automated
Design of Dynamic Web-based Courseware
Nabendu Chaki, Ranjan Dasgupta 111

Transparency, Simplicity, and Trusted Software
Daniel E. Cooke, Joseph Rushton, Brad Nemanich 121

Towards Combining Ontologies and Model Weaving for the Evolution of Requirements
Models
Allyson Hoss, Doris Carver 129

Text Classification and Machine Learning Support for Requirements Analysis Using Blogs
Douglas Lange 137

Requirements Documents and Opportunities for Natural Language Processing
Barbara Paech 141

3

Model-Based Requirements Specification and Tracking for Service Oriented Architecture
(SOA) Based Systems
John Salasin 149

Empirical Indicators for Very Early Functional Complexity Estimation on Data Intensive
Information Systems
Pedro Salvetto, Juan Carlos Nogueira, Julio Fernández 155

Requirements to Components: A Model-View-Controller Architecture
Sabnam Sengupta, Abhik Sengupta 167

Composition and Reconciliation: Challenges and Possible Solutions to Integrate
Stakeholders Needs Together?
Stephen Yau, Zahaoji Chen 185

Requirements Engineering in a Bidding Decision Support System
Weicun Zhang, Lin Zhang 187

4

Innovations for Requirements Analysis: From Stakeholders Needs to Formal
Designs

Luqi & Fabrice Kordon

Monterey Workshop 2007 Chairs

1. Introduction to the Monterey Workshop

The objective of the entire series of 15 Monterey workshops since 1992 has been to
“increase the practical impact of formal methods in computer-aided software
development”. The workshop seeks to improve software practice via application of
engineering theory and to encourage development of engineering theory that is well
suited for this purpose.

Previous workshops have reduced the gap between theoretical and practical aspects of
software/system engineering and have produced a consensus that the pain of system
development could be reduced via computer aid for or automation of software
engineering subtasks based on particular theories and various kinds of formal models. A
common theme has been to hide theoretical results and complex mathematical ideas
inside tools with simple interfaces so that practitioners could use them without the need
to fully understand the theory behind them.

However, there has also been general agreement that the pain of development cannot be
eliminated completely. No matter what you do, somewhere in the process some people
have to think clearly and in detail to reach agreement on what problems should be solved
by the software to be developed. Consequently, requirements, response to changes, and
human aspects of programming have been identified as potentially fruitful areas for
improvement.

2. Goal of Monterey Workshop 2007

The 2007 workshop is focused on requirements, particularly the process of transforming
vague and uncoordinated needs of individual stakeholders into consistent and well
defined requirements that are suitable for supporting automated and computer aided
methods for engineering subtasks in the development process to follow.

Errors or failures of software-based systems are due to a variety of causes, e.g.
misunderstanding of the real world, erroneous conceptualization, or problems in
representing concepts via the specification or modeling notations. Precise specification is
a key success factor as are communication and the deliberation about whether the
specification is right and whether it has been properly implemented. Not all stakeholders
are familiar with the formal models and notations employed. Some important
requirements might be difficult to quantify and/or express using formal languages, such
as the desire that a system should be user-friendly or easily maintainable. Better
technologies for requirements analysis should be thus considered.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

5

The majority of requirements are given in natural language, either written or orally
expressed. Other requirements might also be visually expressed in terms of figures,
diagrams, images or even gestures. Artificial-intelligence approaches might be used to
develop prototypes, which can then be re-engineered using more conventional
requirements technologies and safety assurance techniques. For example, we might
employ large amounts of semantic and statistical data, knowledge bases and theorem
provers to infer as much contextual information as possible from the (vague) textual or
visual requirements. Then, some extra questions could be raised to system/software
stakeholders to point out some fuzzy (or missing) requirements to be refined or some
conflicting requirements to be reconciled.

The automatic analysis of natural language expressions has not yet been fully achieved,
and interdisciplinary methodologies and tools are needed to successfully go from natural
language to accurate formal specifications. Conformance of a system implementation to
its requirements requires dynamic and efficient communication and iteration among
system stakeholders. It is in supporting this process, and not in supplanting it, that
innovative approaches to requirements analysis need to find their proper role.

We want to gain a better understanding about how to deal with natural language as the
vehicle from which we derive system/software requirements, how to use intelligent
agents as entities to facilitate semi-automatic requirements-documentation analysis, and
how to build automatic systems to aid in requirements/specifications elicitation. The
overall aim is to exchange ideas for continued research in the intersection of these two
areas and to reduce the gap between theory and practice.

A good case study for these issues is to consider how to extract a conceptual model of the
goals and requirements of the software needs discussed in a blog. As blogs are
unstructured natural language, they represent one of the most difficult challenges for
natural language processing. All workshop participants have been requested to use the
case study given in Section 4 of this paper to illustrate their work.

3. Focus Areas

The three days of the workshop are organized around the following focus areas:

Recent Advances in Requirements Engineering. Feather compares various approached to
specification and requirements analysis. Aschauer et al explore success factors for agile
requirements analysis. Dinesh et al present an approach for regulatory conformance
checking.

Human and Linguistic aspects of Requirements Engineering. Kof addresses identification
of goals in stakeholder dialogs. Sawyer examines profiling and tracing of stakeholder
needs. Goedecke explores the relation between viewpoints and documents.

Computer Aid for Requirements Engineering. Fe describes how model-driven prototyping
can help elicit requirements. Popescu et al explain how automatically created OO models
can be used to improve the quality of requirements specifications.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

6

The panels and discussion sections interleaved with the presentations are focused on
integrating, balancing, and assessing the various viewpoints presented at the workshop to
reach a consensus on where we are, how emerging capabilities for natural language
processing and computer aided requirements elicitation methods can contribute, and to
identify the best paths forward.

4. Workshop Case Study

All workshop participants have been asked to use the case study given hereafter to
illustrate their work.

Transportation Security
Administration (TSA)

Federal Aviation
Administration (FAA)

Airport screening and
security

Blogger Post

We have to ban on airplane passengers taking liquids on board in order to
increase security following the recent foiled United Kingdom terrorist plot.
We are also working on technologies to screen for chemicals in liquids,
backscatter, you know…

Technologies that could help might work well in a lab, but when you use it
dozens of times daily screening everything from squeeze cheese to Chanel No. 5
you get False Alarms … so it is not quite ready for deployment!

Come on! Generating false positives helped us stay alive; maybe that wasn't a
lion that your ancestor saw, but it was better to be safe than sorry. Anyway, I
want you to be more alert - airport screeners routinely miss guns and knives
packed in carry-on luggage.

Well… It's not easy to move 2 million passengers through U.S. airports daily.
And people can't remain alert to rare events, so they slip by.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

7

We can deal with it. What if you guys take frequent breaks? And also we are
going to artificially impose the image of a weapon onto a normal bag in the
screening system as a test. Then screeners learn it can happen and must expect it.
Eventual solution will be a combination of machine and human intelligence.

Sounds good though we do take breaks and are getting inspected. We do not get
annual 'surprise' tests - sometimes we get them everyday; and if a screener misses
too may of these consistently, they are sent to training.

We have yet to take a significant pro-active step in preventing another attack -
everything to this point has been reactive. Somebody hijacks a plane with box
cutters? - Ban box cutters. Somebody hides explosives in their shoes? - X-ray
shoes, and then ban matches. We are well behind!

What do you suggest? Yes, there is an uncertainty. On each dollar that a potential
attacker spends on his plot we had to spend $1000 to protect. There are no easy
solutions. We are trying to federalize checkpoints and to bring in more manpower
and technology.

We need to think ahead. For instance, nobody needs a metal object to bring down
an airliner, not even explosives. Practically everything inside the aircraft is easily
flammable, except for the people, so all anyone needs is oxidizer. Do any of the
automated screening devices detect oxidizers? Are the human screeners trained to
recognize them?

Good point. Airlines need to take the lead on aviation security. The corporate
response was to market cheap tickets and pass security off on the federal
government. Have a trained group of security officers on every flight. Retrain
flight attendants as security officers. Forget about passing around the soda and
peanuts - that should be secondary.

Sir, a lot of airlines are not doing well and are on the Government assistance.
Prices go up, baggage get mishandled. There are constant changes in screening
rules – liquids/no liquids/3-1-1 rule. Anything radical will not only cost a lot of
money but also deter people. I mean an economic threat is also a threat.

I think that enforcing consistency in our regulations and especially in their
application will be a good thing to do. Another thing is that even if an airline goes
bankrupt there are still advantages: bankruptcy makes it easier to rearrange
company assets and to renegotiate vendor and supplier contracts.

Ok, we had very productive discussion. Now back to work. I want you to come
up with some concrete measures based on what we have been talking about. You
should finally generate some ROI for that money we have been spending. And do
not forget, the examples listed above are not all-inclusive.

The objective of the case study exercise is to answer the following questions based on the
discussion above:

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

8

1. What was the topic(s) of the discussion? Have you noticed any contradictions?
2. What are the realistic requirements that FAA suggests for increasing airport

security?
3. What long-terms goals should be set by TSA?
4. What concrete changes should be enforced by Airport screening and security?

5. Conclusion

Overarching goals of the rest of the series of Monterey Workshops are to create a shared
community-wide articulation of the system/software engineering enablement challenge,
reach consensus on the set of intellectual problems to be solved, and create a common
vision of how the solutions to these problems will fit together in a comprehensive
engineering environment.

The Monterey Workshop has been able to bring the brightest minds in Software
Engineering together with the purpose of increasing the practical impact of formal
methods for software development so that these potential benefits can be realized in
actual practice. In the workshop, attendees and organizers work to clarify what good
formal methods are, what are their feasible capabilities, and what are their limits. Overall,
the workshop strives to reduce the gap between theory and practice. This has been a slow
and difficult process because theoreticians and practitioners do not normally talk to each
other, and did not at the beginning of the workshops. This gap has been gradually
reduced. In particular, researchers have focused on problems that are relevant to the
practitioners, and have helped demonstrate how recent theory can be applied to solve
current problems in software development practice.

Here are the workshops:

N Year Theme Location Chairs
0 1992 Concurrent and Real-Time Systems Monterey Luqi, Gunter
1 1993 Software Slicing, Merging and

Integration
Monterey Berzins

2 1994 Software Evolution Monterey Luqi, Brockett
3 1995 Specification-Based Software

Architecture
Monterey Luqi

4 1996 Computer-Aided Prototyping Monterey Luqi
5 1997 Requirements Targeting Software and

System Engineering
Bernried Broy, Luqi

6 1998 Engineering Automation for
Computer-Based Systems

Carmel Luqi, Broy

7 2000 Modeling Software System Structures
in a Fastly Moving Scenario

Santa
Margherita
Ligure

Astesiano, Broy,
Luqi

8 2001 Engineering Automation for Software
Intensive System Integration

Monterey Luqi, Broy

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

9

9 2002 Radical Innovations of Software and
Systems Engineering in the Future

Venice Wirsing

10 2003 Embedded Systems Chicago Shatz
11 2004 Compatibility and Integration of

Software Engineering Tools
Vienna Manna,

Henzinger
12 2005 Networked Systems Irvine Sztipanovits,

Kordon
13 2006 Composition of Embedded Systems Paris Kordon,

Sokolsky
14 2007 Innovations for Requirements Analysis Monterey Luqi, Kordon
15 2008 Foundations of Computer Software Budapest Sztipanovits

These workshops have helped focus the attention of the community on many productive
directions. For example, since the 1995 workshop identified specification-based
architectures as a key means to achieve system flexibility and reuse, there has been a
great deal of activity in these areas. A great deal of research has produced architecture
description languages and associated analysis methods, there have been commercial
advances on “plug and play” hardware and software, adoption of service-based
architectures in electronic commerce, and a move toward open architectures in
government and defense systems. Currently the practical impact of software architecture
is no longer in doubt.

We look forward to comparable developments on computer aided requirements analysis
in the decade to come.

Acknowledgements

The Monterey Workshops were initiated under the support of Dr. Hislop at ARO and
many others at NSF, ONR, AFOSR, and DARPA. We would like to thank DARPA and
NSF for their financial support of the 2007 workshop, NRC support of two talented
postdoctoral fellows Dr. Rodriguez and Dr. Ivanchenko who contributed to the proposal,
workshop case study and material for the web page, the program committee chairs
Barbara Paech and Craig Martell and committee members for their efforts on reviewing
papers and putting together the workshop program, and the local chair Craig Martell for
handling endless practical details.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

10

Ambiguity in Natural Language Requirements Documents

Daniel M. Berry
School of Computer Science

University of Waterloo
200 University Ave. West

Waterloo, Ontario N2L 3G1 Canada
dberry@uwaterloo.ca

http://se.uwaterloo.ca/~dberry

Abstract

When requirements are written, as they usually are, in natural language, ambiguity is a
major cause of their not specifying what they should and implementers implementing the
wrong system. Simple misuse of the language in which the document is written is one
source of these ambiguities.

This talk argues that even when formal methods are used, natural language is key in
requirements engineering. The talk describes the ambiguity phenomenon from several
points of view, including linguistics and software engineering. Several strategies for
avoiding and detecting ambiguities are presented. Strong emphasis is given on the
problems arising from the use of heavily used and seemingly unambiguous words, phrases,
and constructs such as ``all'', ``each'', `every'', and plural in defining or referencing sets; the
positioning of ``only'' and ``also''; and referents of pronouns. Many examples from
requirements documents are examined. The talk concludes with a discussion of
requirements for automated tools for finding ambiguities.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

11

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

12

Discussion of Some Past and Current Approaches to
Specification and to Requirements Analyses

Martin S. Feather1

1 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr,
Pasadena CA 91109-8099

Martin.S.Feather@jpl.nasa.gov

Abstract. Several decades ago Balzer at al aimed to aid users compose precise
and correct specifications from informal natural language descriptions. How
they approached this problem may be of interest to this workshop. The
workshop, however, has a focus on requirements (as distinct from
specifications). This suggests a significant difference in the issues that need to
be dealt with, even though the end points – natural language, and
implementations, might be the same. Some ongoing themes of research are
mentioned, leading to a focus on what is clamed as an understudied area,
support for requirements decision making on the basis of partial information.
Goal graph work is suggested as exemplifying work in this area, and lastly the
author’s own work in a quantitatively-based goal graph like approach is briefly
illustrated with respect to the case study blog.

Keywords:.Specification freedoms, requirements, goals, objectives,
quantitative reasoning, risk-informed decision making

1 Early Work on Natural Language to Specification to
Implementation

In the 1970s Bob Balzer was Project Leader of the Specification Acquisition From
Experts (SAFE) Project at the Information Sciences Institute, University of Southern
California. Some of this work is described in [1]; quoting from Balzer’s biography at
the end, “This project is attempting to aid users to compose precise and correct
program specifications from informal natural language descriptions by resolving the
ambiguity present through context provided by the system’s knowledge of programs,
programming, and the application domain”. One of the key decisions Balzer et al
made was to design a formal specification language that was as close as possible to
the way people tended to express problem specifications in natural language. They
began by establishing the principles that such a language should exhibit, documented
in [2]. They then developed the language Gist to fulfill these principles [3]. Gist thus
served as a stepping stone – a problem could, it was hoped, readily be converted from
an informal, natural language, formulation into its formal equivalent in Gist;
thereafter, program synthesis and program transformation techniques [4] could be
applied to convert that specification into an efficient implementation. These ambitions

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

13

led to much work by Balzer’s group, described in a retrospective paper [5]. Much of
the effort was expended on the step from formal specification to implementation, an
area of investigation by several research groups at that time. Challenges remain in that
area, as outlined in a more recent retrospective [6]. The step from natural language to
formal specification received relatively little attention once the specification language
Gist had been developed. Balzer’s group did some work in the reverse direction,
generating natural language as a means to explain the formal specification, and to
explain the results of symbolic evaluation of the formal specification.
With this history in mind, how does this relate to the workshop’s focus on
requirements analysis?

2 Requirements Analysis … Needs to Designs

The workshop’s title and statement of objectives include mention of, among other
things:

Requirements analysis: From Stakeholders Needs to Formal Designs
Precise specification (for deliberation both for “whether the specification is
right” and “whether it has been properly implemented”)
Challenging requirements to express formally (“user-friendly”, “easily
maintainable”)
Inferring contextual information, and aiding in requirements/specifications
elicitation

These, together with the blog case study, indicate that while the ultimate goal might
be to arrive at a formal specification (or even a design) which will thereafter be
implemented, there is much to do to arrive at what that formal specification should
be. It is this that I interpret as the realm of “requirements analysis”. A while back
Steve Fickas and I argued that, just as specifications exhibit freedom from
implementation concerns (a theme of the work I was involved in as a member of
Balzer’s group [6]), requirements exhibit freedom from specification concerns [7].
Briefly, we argued that requirements may well exhibit incompleteness, inconsistency,
redundancy, ambiguity, non-uniformity, and heterogeneity, and that it is these
“freedoms” that have to be removed to arrive at a specification (which will ideally be
complete, consistent, non-redundant, unambiguous, uniform, and homogeneous).
NOTE: there may be some different interpretation to the term “requirements” – some
would argue that they are specification clauses. In the spirit of the work I did with
Fickas, and (I think) with the intent of this workshop, I am treating requirements and
requirements analysis as encompassing what some might term “goals”, “objectives”,
“desiderata”, etc., and fully expect that there will be the need for negotiation,
compromise, iteration, decision-making, etc., to deal with them.

With this in as the focus, what does the history of Balzer’s specification-centered
work suggest? One possibility is to take the same tack: look at how people naturally
state requirements in natural language, strive to construct a requirements notation that
provides a no less convenient yet rigorous equivalent, and develop the tools and
techniques that will operate on that language to help perform the analyses,

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

14

translations, feedback, etc. Yet scrutiny of the outcome of the history of Balzer et al’s
efforts suggests that while they inspired a good deal of interesting work, they did not,
in the end, traverse the (in retrospect, highly ambitious) pathway all the way from
natural language, through specification, to implementation. So a plausible alternative
way to proceed would be to focus on the intermediate steps of going from natural
language through requirements to specification: examine these steps to clarify their
purpose, understand the current state of the art, and extend existing capabilities, or
adapt them, or unify them etc, as the case may be, to lead to incremental progress.

On the formal or semi-formal representation and analysis aspects, there has been,
and continues to be, many examples of work that fits this pattern (I am much less
familiar with related work that focuses on the natural language aspects). For example,
in the 1990’s the “viewpoints” concept was being actively pursued by a number of
researchers as a means to represent and deal with multiple stakeholders’ differing
perspectives on the software system they were trying to ultimately produce (for an
overview, see [8]; for a workshop covering this area, [9]). Various studies have
focused on activities in what Robinson et al termed “Requirements Interaction
Management” [10] (“… the set of activities directed toward the discovery,
management, and disposition of critical relationships among sets of requirements”).
Much related work continues under the rubric “Goal-Oriented Requirements
Engineering”, as surveyed in [11] and in a follow-on [12].

So I think the workshop could yield:
An understanding of how natural language could/should influence the ongoing
body of requirements engineering research and application,
A roadmap to improving the ongoing areas of requirements engineering
research – identifying how they should be combined, validated, etc.
A “gap analysis” to reveal which areas are relatively understudied yet
worthwhile, and so in most need of attention. I believe that the work I have
been involved in recently at JPL fits into one of these areas.

3 An Understudied Area – Support for Requirements Decision
Making on the Basis of Partial Information

At requirements time there is often the need to make influential decisions on the basis
of partial information. I assert that support for this is a relatively understudied area.
Approaches that assume anything remotely close to complete capture of all relevant
information to decision making will nearly always be impractical. Instead, the goal
should be to make generally good decisions (albeit at the risk of missing superior
solutions, or of needing to perform backtracking to revise previous decisions that turn
out to lead to undesirable results). As a consequence, the need to have a “perfect”
representation – one that can capture all the nuances and interactions of a problem
domain – is much less of a driver than it would be for, say, a representation of a
formal specification that will lead to implementation.

The goal graph representations and the uses to which they are put, as seen in the
NFR[13] / i*[14] / Tropos [15] lines of work, exemplify a judicious choice of

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

15

representation and analysis capabilities. I believe the workshop’s case study blog
would be interesting to see represented in this style.

During recent years I have been working on an approach (called DDP [16]) that
bears some similarity to the above-referenced goal graphs. It has been successfully
utilized predominantly to help make technology development decisions relatively
early in their lifecycle [17]. In contrast to the goal graphs work, it adopts a more
restrictive graph structure, but extensively utilizes numerical calculations to help
perform analyses over the accumulated data. My JPL colleague Steve Cornford who
invented the DDP approach envisioned from the start the utility of a numerical basis
for DDP’s calculations. Despite the facts that there are known pitfalls with trying to
ascribe and utilize numerical values, our positive experiences suggest that it has
indeed helped teams of stakeholders arrive at superior solutions to requirements
problems. The subsections that follow introduce the core concepts of DDP, and show
(the start of) application of DDP to the workshop case study.

Brief introduction to DDP

A DDP model is populated by instances of three kinds of concepts: Objectives – what
it is that the system or technology under scrutiny is to achieve, Risks – what could
occur to impede the attainment of the Objectives, and Mitigations – what could be
done to reduce the likelihood and/or impact of Risks1. In the DDP model these
instances have quantitative attributes: each Objective has a weight, its relative
importance; each Risk has a likelihood, its probability of occurrence, and each
Mitigation has a cost, the cost of performing it – usually a financial cost, but other
resources can also be considered, such as schedule, power, mass. Quantitative
relationships connect these instances: Objectives are related to Risks, and Risks to
Mitigations. Specifically, Objectives are related to Risks to indicate how much each
Risk, should it occur, impacts (i.e., detracts from the attainment of) each Objective.
Risks are quantitatively related to Mitigations, to indicate how much of a Risk-
reducing effect a Mitigation, should it be applied, has on reducing each Risk, either by
decreasing the Risk’s likelihood, or by reducing the magnitude of the Risk’s impacts
on Objectives; the nature of the Mitigation dictates which kind of reduction takes
place.

The primary purpose of constructing a DDP model is to help decide which
Mitigations to perform; Mitigations incur costs and, by their Risk-reducing effects,
achieve benefits (measured in terms of attainment of Objectives). DDP helps users
balance these concerns when choosing Mitigations. A DDP model can also help users
decide which Objectives to abandon, should it prove too costly to attain all of them.

The usual way of developing and using a DDP model is to assemble a group of
relevant stakeholders in a series of facilitated sessions. The information that goes into
the DDP model is elicited from those stakeholders, and thereafter they make decisions
on its basis. Custom software has been developed to support application of DDP in

1 On occasion our publications use alternate terminology such as “Requirements” in place of

“Objectives”, “Failure Modes” in place of “Risks”, and “PACTs” – an acronym for
Preventative measures, Analysis, process Controls, and Tests – in place of “Mitigations”.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

16

these sessions. A user familiar with DDP “drives” the software, and the DDP screen is
projected so as to be visible to all stakeholders. As they proffer information, it is
entered into DDP on-the-fly, and the status of the information is visible to all. DDP
performs the calculations of cost and benefit as various selections of Mitigations are
studied, and offers a form of heuristic search (using simulated annealing) to help
locate near-optimal selections of Mitigations (e.g., maximize attainment of Objectives
while remaining within some cost limit). DDP employs a variety of visualizations to
present the accumulated information [18].

Initial application of DDP to the case study

A hasty first-cut attempt applying DDP to represent some of the information found in
the blog is shown next.

DDP’s Objectives are used to represent desiderata expressed by the “Blogger
Participants”. At a minimum, DDP requires for each a short title string to serve as a
pithy description, e.g.,

“Invulnerable to terrorist plot”
“High passenger throughput”
“Few false positives”
“Avoid baggage mishandling”

Further information may be associated a DDP Objective, such as a lengthier textual
description, and the source (i.e., indication of which one of the Bloggers provided the
Objective). By default, Objectives are initialized with the same relative weight (1).
These weights can be adjusted to represent priorities, e.g., if it is twice as important to
achieve the Objective “Invulnerable to terrorist plot” as “High passenger throughput”,
then the former would be ascribed double the weight of the latter.

DDP’s Risks are used to represent conditions and events that potentially detract
from attainment of Objectives, e.g.,

“Known attack modes”
“New attack modes”
“Screeners inattentiveness”
“False alarms”
“Passengers confused about regulations”

Lengthier textual descriptions, and their sources, may be associated with Risks. By
default, each Risk is initialized with an “a-priori likelihood” of 1, meaning the Risk is
sure to occur unless Mitigations are applied to inhibit it. Also by default, DDP’s Risks
are each “atomic” objects, i.e., lack any further structure. It is possible to compose
DDP’s Risks into fault trees using “And”, “”Or” and “Not” gates. For example, false
alarms may occur in current practice, and, as suggested in the second posting, can also
be caused by new technologies that are “not quite ready for deployment”. Thus the
“False alarms” risk could be structured into an “Or” of false alarms from conventional
screening, and false alarms from new screening technologies.

DDP’s Mitigations are used to represent the practices that reduce risks, both those
in current use, and those suggested as potential improvements, e.g.,

“Ban taking liquids on board”
“Screen all carry-on luggage”

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

17

“New screening technologies”
“Screeners take breaks”
“Screeners subject to surprise tests and retraining”
“Security officers on every flight”
“Retrain flight attendants as security officers”
“Federalize checkpoints”

These too can have associated textual descriptions, and sources. As the information
becomes available, costs can be associated with Mitigations.

DDP then requires that these concepts be linked – Risks are linked to the
Objectives whose attainment they threaten, and Mitigations are linked to the Risks
they quell. Furthermore, in order to employ DDP’s quantitative reasoning, these links
have to be given values; a Risk-Objective link is given an impact value, the
proportion of the Objective’s attainment that would be lost were the Risk to occur; a
Mitigation-Risk link is given an effect value, the proportion by which the Risk is
reduced if the Mitigation is applied.

For purposes of illustration, I have entered into DDP some of the Objectives, Risks
and Mitigations that I saw within the case study, and made some (as yet unquantified)
connections among them. The figure below shows this connectivity (this is a
screenshot taken from one of DDP’s visualizations).

The top row, of small blue circles, represent Objectives (labeled with their title
strings). The bottom row of small green circles and squares represent Mitigations (the
squares are actually checkboxes on the DDP screen for displaying and controlling
which of the Mitigations are chosen). The middle row of black circles and a small
fault tree structure with an “Or” gate represent Risks. The lines connecting the Risks
to the Objectives indicate which Objectives are impacted by which Risks (absence of
a line denotes zero impact), but as yet no numerical values have been ascribed to
these connections. The lines connecting the Mitigations to the Risks indicate which
Risks are reduced by which Mitigations (absence of a line denotes no effect). Red
colored lines indicate Mitigation-Risk connections where the Mitigation makes the
Risk worse.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

18

It is noteworthy that the case study blog does not contain indications of
connectivity among these concepts, and provides no indication as to the magnitude of
the various effects. E.g., how much improvement (reduction of risk, and thereby
increase in attainment of objectives) will be gained if checkpoints are federalized?
What is the cost of doing so? Without such information I assert that it is very hard to
make any meaningful decisions. In the style of the goal graph work, qualitative
valuations would be utilized – I would be interested to see the extent to which this
would enable decision making. In the DDP style, quantitative valuations are expected,
and enable various forms of decision making (e.g., identification of the biggest risks,
of the objectives most under threat, of the cost-benefit tradeoffs of different selections
of actions). On this basis I assert that the natural language descriptions found in the
case study blog are a good start at establishing the concepts and how they interrelate,
but the final comment in the blog “come up with some concrete measures” matches
the need, in DDP, to ascribe quantitative valuations in order to support decision
making.

Acknowledgments. Some of the work described in this paper was performed at
Information Sciences Institute, University of Southern California, sponsored by
DARPA, and some at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration.

References

1. Balzer, R., Goldman, N., Wile, D.: Informality in Program Specifications. IEEE Transactions
on Software Engineering, Vol. SE-4 No 2 (March 1978) 94–103

2. Balzer, R., Goldman, N.: Principles of Good Software Specification and their Implications
for Specification Languages. Proc. Specifications of Reliable Software Conference, Boston,
MA, April 1979 IEEE Computer Society (1979) 58–67, reprinted in Software Specification
Techniques, Gehani, N., McGettrick, A.D., eds., Addison Wesley (1986) 25–39

3. Balzer, R.: Transformational Implementation: An Example. IEEE Transactions on Software
Engineering, Vol. SE-7 No 1 (Jan 1981) 3–14

4. Balzer, R.: A 15 Year Perspective on Automatic Programming. IEEE Transactions on
Software Engineering, Vol. SE-11 No 11 (November 1985) 1257–1268

5. Wile, D.S.: Panel Topic and Whitepaper: The Lessons of the 80’s, Proceedings of a
Workshop on Transformation Technology, ICSE ’99 (May 1999)

6. London, P.E., Feather, M.S.: Implementing Specification Freedoms. Science of Computer
Programming 2 North-Holland (1982) 91–131, reprinted in Readings in Artificial
Intelligence and Software Engineering, Morgan Kaufmann (1986) 285–305

7. Feather, M.S., Fickas, S: Coping with Requirement Freedoms. Position paper for the
Workshop on Intelligent Information Systems, Niagara-on-the-lake, Ontario, Canada, April
1991 University of Toronto Press, Toronto (1991) 42–46

8. Finkelstein, A., Sommerville, I.: The Viewpoints FAQ. Software Engineering Journal Vol 11
No 1 (1996) 2–4

9. Vidal L., Finkelstein, A., Spanoudakis, G., Wolf, A.L.: Proceedings of the International
Workshop on Multiple Perspectives in Software Development, Part II of the Joint
Proceedings of the SIGSOFT ’96 Workshops, ACM (1996) 155–297

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

19

10. Robinson, W.M., Pawlowski, S.D., Volkov, V.: Requirements Interaction Management,
ACM Computing Surveys, Vol 35 No 2 (June 2003) 132–190

11. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Roundtrip from
Research to Practice, 2004 IEEE International Requirements Engineering Conference,
(2004), 4–7

12. Mylopoulos, J.: Goal-Oriented Requirements Engineering: Part II, Keynote, 14th IEEE
Requirements Engineering Conference (2006),
http://www.ifi.unizh.ch/req/events/RE06/ConferenceProgram/RE06_slides_Mylopoulos.pdf

13. Mylopoulos, J., Chung, L., Nixon, B.: Representing and Using Non-Functional
Requirements : A Process-Oriented Approach, IEEE Transactions on Software Engineering
Vol 18 No 6, (June 1992) 483–497

14. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering, 3rd IEEE International Symposium on Requirements Engineering (Jan 1997),
226–235

15.Giogini, P., Mylopoulos, J., Sebastiani, R.: Goal-Oriented Requirements Analysis and
Reasoning in the Tropos Methodology, Engineering Applications of Artificial Intelligence,
Vol 18 No 2, (March 2005) 159–171

16. Feather, M.S. and Cornford, S.L. “Quantitative Risk-Based Requirements Reasoning”
Requirements Engineering (2003) 8: pp. 248-263.

17. Feather, M.S., Cornford, S.L., Hicks, K.A., Johnson, K.R.: Applications of tool support for
risk-informed requirements reasoning, Computer Systems Science and Engineering, Vol 20
No 1 (January 2005) 5–17

18. Feather, M.S., Cornford, Menzies, T., Kiper, J.D.: Experiences using Visualization
Techniques to Present Requirements, Risks to Them, and Options for Risk Mitigation,
International Workshop on Requirements Engineering Visualization (REV 2006)
Minneapolis / St. Paul, MN, Sep 2006

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

20

Key factors of a successful agile requirements analysis in the realm of
overhauling an industrial automation system

Thomas Aschauer1, Gerd Dauenhauer1, Patricia Derler1, Wolfgang Pree1,
Christoph Steindl2

1 C. Doppler Laboratory Embedded Software Systems, Univ. Salzburg
Jakob-Haringer-Str. 2, 5020 Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at
www.cs.uni-salzburg.at

2 Catalysts GmbH,

Prager Str. 6, 4040 Linz, Austria
steindl@catalysts.cc

www.catalysts.cc

Abstract. This paper sketches a recent successful requirements analysis of a complex industrial
automation system that mainly required a talented expert, with a beginner’s mind, who has been willing to
dig into the domain details together with a committed customer and a motivated team. With these key
factors and the application of an appropriate combination of well-established as well as some newer
methods and tools we were able to efficiently elicit, refine and validate requirements. From this specific
context we try to derive implications for innovative requirements analysis. We argue that in projects that
go beyond simple, well defined and well understood applications, automated requirements analysis is
unlikely to lead to a successful specification of a system.

Keywords: requirements analysis, agile development, use cases, automation systems

1 Domain and project context

The project deals with so-called engine test bed systems that are used, for example, in the automotive
industry. Functions of such a system are the parameterization and visualization of its real-world components,
such as the engine under test, and the sensors, as well as the measured values. The software has evolved over
the last two decades and comprises about 1.5 million lines of code, mainly written in C++ and C. Because one
of the goals of the project is to improve the current system’s usability, it was named FACE. A major hurdle
for the users of the current system is the fact that the domain entities they have in mind (such as engines,
dynamometers, measurement and conditioning devices) do not match well with the entities in the user
interface. For example, a person who configures a test bed would like to deal with a graphical representation
of the test bed as shown in Figure 1, with the parameters and measured values associated with the physical
components.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

21

Fig. 1. Sample engine test bed configuration

The current system requires error-prone editing of parameter sets in spreadsheets as depicted in Figure 2 as
well as the adaptation of configuration files and scripts scattered in the file system. Using those parameter sets
and finding specific parameters is difficult as parameters associated with a physical entity of the test bed are
not grouped accordingly. For example, if the engine under test is changed the user has to know by heart which
parameters need to be changed. Configuration files and scripts exist in various commercial and proprietary
formats and different editors are required for each file type.

Fig. 2. Sample parameter sets

The system’s manufacturer, that is, our customer and research cooperation partner, came up with a fuzzy
description of requirements on about 25 pages. The list includes general requirements which are applicable to
almost any software system such as maintainability and security issues, and also specific requirements such as
the visualization of signal paths. The most important of the overall 19 ‘requirements’ were summarized as
follows:

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

22

a) Introduce components that support both their visualization and parameterization. The current system
consists of parameter sets structured according to software requirements. For example, parameters that
have to be loaded at the same point in time are grouped in one parameter set. As a result, parameters are
hard to find and using the system requires a lot of knowledge about its implementation because software
design decisions are directly reflected in the user interface. The current system does not provide a notion
of domain components.

b) Provide different parameter views, including guidance through parameterization tasks. Possible
parameter views are the physical view only showing parameters describing the hardware; for example,
which plugs and cables are used to connect two pieces of hardware and the functional view describing
aspects such as data type compatibility of connected entities and software functions operating on
measured values.

c) Master complexity, for example, by hiding those parameters that are not needed for a specific task. For
example, a service task concerned with finding the defect part between the automation system and a
certain device does not require knowledge about the simulation model for the device.

d) Compatibility to existing systems, which means supporting a wide range of tools and technologies.
e) Provide only one editor for each class of parameters and eliminate configuration files by using parameter

sets instead.
f) Improve performance (start up, export, import, switching between test runs).
g) Do as many checks as possible offline (meaning without being connected to the actual hardware on the

test cell), for example, inconsistent measurement and consumption frequencies can be detected offline
by comparing parameters of connected components whereas the existence of a piece of hardware in a
test bed can only be checked online when the system is connected to the test bed.

The requirements document was accompanied by a confusing diagram that should illustrate the complexity of
the current system by showing a set of entities that are potentially relevant for a user and thus need to be
displayed. Figure 3 depicts that. You do not need to be able to read and understand it to get an idea of what
we mean by confusing diagram.

Fig. 3. Diagram as part of the original requirements

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

23

Additionally, we received a huge amount (more than one gigabyte) of user documentation, system
requirement specifications for the existing system and UML diagrams. The latter consisted of use case
diagrams and use cases describing functionality already in specific technical details. Because those documents
grew with the software during the last two decades, the documentation was not up to date.

2 The basis of successful requirements analysis

Due to the importance of the FACE project for our customer, the company is fully committed to it and we
report to one of its executives. Company representatives with in-depth domain knowledge as well as product
managers were available in the requirements analysis phase, which lasted for about 5 months from September
2006 until January 2007. During that phase the team consisted of one top nodge software scientist as team
leader, and four young software engineers with little or no project experience. The team leader has extensive
software development experience, social skills training, and an additional solid background in automation
systems, but had no prior knowledge of the particular engine test bed system. This beginner’s mind [12]
allowed the team to profoundly analyze the features of the current system as well as its strengths and
weaknesses. This is a quality already pointed out by Berry in [1] where he describes a computer-system-savvy
person without any knowledge of the domain as the person asking ignorant, not stupid, questions to expose
tacit assumptions made by domain-expert stakeholders assuming incorrectly that all other domain-expert
stakeholders understand. By making those assumptions explicit, conflicts in the understanding are discovered
at an early stage in the software development. The gained domain understanding combined with the team
leader’s solid background in software science, in particular, component technology, allowed the team to come
up with a prototype that was enthusiastically received by the customer’s top management in January 2007.

We are convinced that no automated system would have been able to accomplish something close to such a
successful requirements analysis and specification based on the available natural language descriptions of the
requirements, the current system and its envisioned features.

3 Prototyping-based, agile requirements analysis

The team gained a profound domain understanding in four workshops with customer representatives within
the first 6 to 8 weeks months. This process was documented by writing a glossary comprising about 90 terms
as well as by analyzing and (re)writing ca. 130 use cases. Then we started to develop a throw-away prototype
to show the envisioned system and get rapid feedback from the customer. The prototype applied the following
software science concepts to tackle complexity:
• Domain-specific components. The test bed components need to be mirrored in the software system. For

that purpose we iteratively defined what we called a Domain Component Description Language
(DCDL). Before we could do that we had to become aware of a fundamental misunderstanding when
using the term component. The customer meant domain-specific components. The development team
had components in mind as defined in software science, that is, components describing a unit of
composition with contractually specified interfaces and explicit context dependencies only. Such a
software component can be deployed independently and is subject to composition by third parties [2].
Though domain components are somehow related to software science components, it was crucial to
overcome this misunderstanding. Components for automation systems have to provide multiple views,
including a physical, a functional, a parameter, an operations and a configuration view. For the definition
of domain components we came up with the DCDL. Domain components allow the customer to manage

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

24

a wide variety of configurations that result of different test beds, different devices in each test bed and
different test requirements.

• Separation of concerns (SOCs). The term separation of concerns can be traced back to [6] and means the
splitting of various aspects of software into independent parts that can be dealt with independently. An
example where we applied SOCs is in the separation of viewing physical details of a component from
viewing its functional details.

• Hierarchical decomposition, collapse & expand. By allowing (domain) components to be built
hierarchically, that is, by layering component systems as described in [7], complexity can be managed.
Collapse and expand mechanisms help hiding unnecessary details.

• Abstraction, stepwise refinement. Wirth discusses the importance of stepwise refinement in [8]. An
example where stepwise refinement is important in the FACE project can be given by the stepwise
definition of a test bed. To get an overview of devices in a test bed, it must be possible to create domain
components or component groups and to loosely connect them. Only at a later point in time, the physical
connections are made and parameters such as plug types and pin assignments are entered into the
system.

• Guidance (role-based views, tasks). A useful example, where guidance can improve the work with the
system, is problem resolution. Figure 4 shows how we designed a problem resolution view in the early
analysis phase.

Fig. 4. Prototypical error tracking view

A list of steps that might solve the problem can be generated partly automatically. The user is guided
automatically through these steps. Other users of the system, who had similar problems before, might
have provided some or all of these steps. A graphical representation could highlight devices in the
physical view of the test bed that need to be checked.

• Use of visual representations to manage complexity. Managing complexity by choosing appropriate
visual representations of a problem is widely used. Displaying measurement values, parameters and
status information of a component can be shown “in place”, that is, close to the graphical representation
of a particular domain component (see values and colored regions in Figure 1) and not, as it is the case

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

25

in the current system, in some configuration dialogs or error message windows that collect messages
from the system as a whole.

We did not start with a prototype right from the beginning because important concepts of the software
involved graphical representations that needed to be designed first based on the gradually gained domain
understanding. Therefore, numerous concepts and ideas were proposed and discussed in simple drawings on
paper, in slide presentations and figures drawn with common drawing tools. Those drawings exemplified how
the software could look like for concrete use cases. Figure 5 shows the sketch representing the physical view
of a sample test bed configuration. Those pictures were either developed together with the customer or
discussed afterwards.

Fig. 5. Physical view of a sample test bed.

Basically, boxes represent domain components which are pieces of hard- or software and are connected to
other components. Concepts such as grouping, abstraction by hierarchically structuring components, and
different ways of connecting components were applied and refined using these drawings.

As a next step, we analyzed the roles of users who interact with the software. As roles we discerned
component engineers, commissioning engineers, test engineers and service engineers. Each role has different
goals when using the software and therefore, we refined the use cases and sorted them according to the roles.
To get a better understanding of the envisioned system, we started to develop a throw-away prototype. The
purpose of this prototype was to show how users interact with the system. For every role, one or two
illustrative use cases were chosen and a storyboard was written that describes in detail how the user would
operate the software. The prototype implemented these storyboards with pre-drawn pictures according to the
user interactions described in the storyboard. This basically means that by using the correct “click-sequence”,
the correct pictures are shown. Such a prototype can only be operated by someone who knows the storyboards
and the click-sequences in detail. To enable the discussion of the prototype with a broader audience, we came
up with videos that showed the interaction of the roles with the FACE prototype and we explained the
concepts and decisions in the audio track.

From the gained domain understanding and the FACE throw-away prototype that served as a vehicle to
document and elicit customer requirements, we derived the user requirements specification, that comprises
overall 16 core features. The following list summarizes some of these features:

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

26

• a domain component framework
• configuring domain components
• combining domain components in groups or hierarchies
• managing domain components in standard or user-defined libraries
• comparing domain components and finding out similarities
• versioning domain components
• undo and redo mechanisms
• creating and recording macros for often used interaction sequences
• enabling users to provide their own experience such as clues for problem resolution
• managing views and user rights

The implementation phase has started in February 2007. We continue with the close interaction and short
feedback cycles that are typical for agile development projects. In particular, we apply test-driven
development [13].

4 Limits of automated requirements analysis

This real-world project corroborates, in our point of view, that requirements analysis can barely be automated
if the stakeholders do not have a clear understanding about a software system. In this case it was the guts
feeling of the customer that the current system could be significantly improved. The customer and its team
were somehow trapped in the existing system. Knowing too many details and worrying about significant
changes made it virtually impossible to come up with appropriate requirements for an overhauled system.
That required creativity that cannot be expected from tools. To quote Deming [14]: “As a good rule, profound
knowledge comes from the outside, and by invitation. A system cannot understand itself.”

We briefly checked which tools for automating requirements analysis existing today. Examples for
automated requirements analysis tools are the Analyst Real Teams System (ARTS) [10] or the Goal Based
Requirements Analysis Tool (GBRAT) [5], Juerjens and Shabalin present in [11] an approach for automated
verification of UML models. Some tools take requirements in natural language as an input and use linguistic
evaluation for the analysis. A research on linguistic tools can be found in [3]. Many of the mentioned
approaches are applied to case studies in domains that are well defined and well understood. That
precondition is not true for the FACE project. We assume that none of the tools that automate requirements
analysis could lead to a successful completion of the FACE requirements analysis, because the available
inputs from the customer are too fuzzy and the terminology is not precise enough. In such a situation the
sketched agile requirements analysis with short feedback cycles together with the communication vehicle of a
throw-away prototype has turned out to be an appropriate requirements analysis method.

References

1. Berry, D. M.: The Importance of Ignorance in Requirements Engineering, Journal of Systems and
Software (1995)

2. Szyperski, C., Pfister, C.: Workshop on Component-Oriented Programming, Summary. In Muehlhaeuser,
M. (ed.): Special Issues in Object-Oriented Programming – ECOOP96 Workshop Reader. Heidelberg:
Dpunkt Verlag (1997)

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

27

3. Luisa, M., Mariangela, F., and Pierluigi, I.: Market research for requirements analysis using linguistic
tools. Requir. Eng. 9, 1 (Feb. 2004), 40-56. DOI= http://dx.doi.org/10.1007/s00766-003-0179-8 (2004)

4. Gargantini, A. and Morzenti, A.: Automated deductive requirements analysis of critical systems. ACM
Trans. Softw. Eng. Methodol. 10, 3 (Jul. 2001), 255-307. DOI=
http://doi.acm.org/10.1145/383876.383877 (2001)

5. Anton, A. I., Liang, E., and Rodenstein, R. A.: A Web-based requirements analysis tool. In Proceedings of
the 5th international Workshops on Enabling Technologies: infrastructure For Collaborative Enterprises
(WET Ice'96) (June 19 - 21, 1996). WET-ICE. IEEE Computer Society, Washington, DC, 238 (1996)

6. Dijkstra, E. W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New Jersey (1976)
7. Szyperski, C.: Component software and the way ahead. In Foundations of Component-Based Systems, G.

T. Leavens and M. Sitaraman, Eds. Cambridge University Press, New York, NY, 1-20 (2000)
8. Wirth, N.: Program development by stepwise refinement. Commun. ACM 14, 4 (Apr. 1971), 221-227.

DOI= http://doi.acm.org/10.1145/362575.362577 (1971)
9. UML, Unified Modelling Language, http://www.uml.org/.
10. Analyst Real Team System, Goda Software, http://www.analysttool.com/.
11. Juerjens, J., Shabalin, P.: Automated verification of UMLsec models for security requirements. In J.-M.

Jézéquel, H. Hußmann, and S. Cook, editors, UML 2004 -- The Unified Modeling Language, volume
2460 of LNCS, pages 412--425. Springer (2004)

12. Suzuki, S.: Zen Mind, Beginner's Mind, Weatherhill (1973)
13. Beck, K.: Test-driven development: By example. Addison-Wesley Publishing (2002)
14. Deming, W. E.: The New Economics for Industry, Government, Education - 2nd Edition. MIT Press.

ISBN 0-262-54116-5 (2000)

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

28

Logic-based Regulatory Conformance Checking

Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

Department of Computer Science
University of Pennsylvania

Philadelphia, PA - 19104, USA
{nikhild,joshi,lee,sokolsky}@seas.upenn.edu

Abstract. In this paper, we describe an approach to formally assess
whether an organization conforms to a body of regulation. Conformance
is cast as a model checking question where the regulation is represented
in a logic that is evaluated against an abstract model representing the
operations of an organization. Regulatory bases are large and complex,
and the long term goal of our work is to be able to use natural language
processing (NLP) to assist in the translation of regulation to logic.

We argue that the translation of regulation to logic should proceed one
sentence at a time. A challenge in taking this approach arises from the
fact that sentences is regulation often refer to others. We motivate the
need for a formal representation of regulation to accomodate references
between statements. We briefy describe a logic in which statements can
refer to and reason about others. We then discuss preliminary work on
using NLP to assist in the translation of regulatory sentences into logic.

1 Introduction

Regulations, laws and policies that affect many aspects of our lives are repre-
sented predominantly as documents in natural language. For example, the Food
and Drug Administration’s Code of Federal Regulations1 (FDA CFR) governs
the operations of American bloodbanks. The CFR is framed by experts in the
field of medicine, and regulates the tests that need to be performed on donations
of blood before they are used. In such safety-critical scenarios, it is desirable to
assess formally whether an organization (bloodbank) conforms to the regulation
(CFR).

Conformance checking is a relatively new problem in requirements engineer-
ing, which has been gaining attention in industry and academia [1]. A key differ-
ence between regulations and other sources of informal requirements is in deter-
mining the source of a requirement. The requirements used to design a system
often arise from varied places, such as interviews with customers and discussions
with domain experts. This makes the identification of requirements a difficult
problem. However, since there are consequences associated with disobeying the
law, law-makers spend considerable effort in articulating the requirements (as

1 http://www.gpoaccess.gov/cfr/index.html

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

29

normative sentences). As a result, one can informally associate a requirement
with a sentence or discourse.

The challenge in conformance checking is that the task of formalizing the
requirements is difficult, due to the large size and complexity of regulations.
The long term goal of our work is to use natural language processing (NLP)
techniques to aid in the formalization of regulation. From the perspective of
using NLP for requirements engineering, this area is epecially interesting due to
the availability of large corpora of regulations that can serve as a test-bed for
NLP techniques.

We approach the problem of formally determining conformance to regula-
tion as a model-checking question. The regulation is translated to statements
in a logic which are evaluated against a model representing the operations of
an organization. The result of evaluation is either an affirmative answer to con-
formance, or a counterexample representing a subset of the operations of the
organization and the specific law that is violated. A similar approach is adopted
by several systems [1–3].

When a violation is detected, the problem could be in one of three places:
(a) the organization’s operations, (b) the regulation or (c) the translation of
the regulation to the logic. To aid in determining the source of the problem,
there needs to be a notion of correspondence between the sentences of regulation
in natural language and logic. We attempt to maintain a correspondence by
translating regulation to logic one sentence at a time. An added benefit of doing
this is to be able to focus our NLP efforts at the sentence level.

In this paper, we discuss two related parts of our approach. The first part
deals with the issue of designing a logic into which we can translate regulation one
sentence at a time. The main difficulty that we encountered in doing this is the
problem of references to other laws. A common phenomenon in regulatory texts
is for sentences to function as conditions or exceptions to others. This function of
sentences makes them dependent on others for their interpretation, and makes
the translation to logic difficult. In Section 2, we argue (using examples and
lexical occurence statistics) that a logic to represent regulation should provide
mechanisms for statements to refer to others, and to make inferences from the
sentences referred to.2 In Section 3, we briefly describe the logic that we use to
represent regulation.

In the second part of the paper (Section 4), we turn our attention to the
problem of using NLP to assist in the translation of sentences of regulation into
logic. Section 5 concludes.

2 The Problem of References to Other Laws

In this section, we argue that a logic to represent regulation should provide
a mechanism for sentences to refer to others. The discussion is divided into
two parts. In Section 2.1, we discuss examples of the phenomenon that we are

2 A study in [1] suggests that such references between sentences are common in privacy
regulation as well.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

30

interested in and how they may be represented in a logic with no mechanism for
sentences to refer to others. We then contrast the distribution of some lexical
categories in the CFR with newspaper text, which suggest that references to
sentences are an important way of expressing relationships between sentences in
regulation (Section 2.2).

2.1 Examples

The examples in this section are shortened versions of sentences from the CFR
Section 610.40, which we will use through the course of the paper. Consider the
following sentences:

(1) Except as specified in (2), every donation of blood or blood component must
be tested for evidence of infection due to Hepatitis B.

(2) You are not required to test donations of source plasma for evidence of infection
due to Hepatitis B.

(1) conveys an obligation to test donations of blood or blood component for
Hepatitis B, and (2) conveys a permission not to test a donation of source plasma
(a blood component) for Hepatitis B. To assess an organization’s conformance
to (1) and (2), it suffices to check whether “all non-source plasma donations
are tested for Hepatitis B”. In other words, (1) and (2) imply the following
obligation:

(3) Every non-source plasma donation must be tested for evidence of infection due
to Hepatitis B.

There are a variety of logics in which one can capture the interpretation of
(3), as needed for conformance. For example, in first-order logic, one can write
∀x : (d(x)∧¬sp(x)) ⇒ test(x), where d(x) is true iff x is a donation, sp(x) is true
iff x is a source plasma donation, and test(x) is true iff x is tested for Hepatitis
B. Thus, to represent (1) and (2) formally, we inferred that they implied (3) and
(3) could be represented more directly in a logic.

Now suppose we have a sentence that refers to (1):

(4) To test for Hepatitis B, you must use a screening test that the FDA has ap-
proved for such use.

The reference is more indirect here, but the interpretation is: “if (1) requires a
test, then the test must be performed using an appropriate screening test kit”. A
bloodbank is not prevented from using a different kind of test for source plasma
donations. (4) can be represented by first producing (3), and then inferring that
(3) and (4) imply the following:

(5) Every non-source plasma donation must be tested for evidence of infection due
to Hepatitis B using a screening test that the FDA has approved for such use.

It is easy to represent the interpretation of (5) directly in a logic. However,
(5) has a complex relationship to the sentences from which it was derived, i.e.,
(1), (2) and (4). The derivation takes the form of a tree:

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

31

(5)

(3)

(1) (2)

(4)

The examples we have considered are simplified versions of the sentences in
the CFR 610.40. In the CFR, (1) has a total of six exceptions, and the exceptions
have statements that qualify them further. This process of producing a derived
obligation and translating it becomes extremely difficult.

References to other laws are not always hierarchical or acyclic. There are
two kinds of circularities that can arise. The first is a syntactic circularity which
arises due to vague references. For example, two occurences of the phrase “re-
quired testing under this section” can give rise to a cycle if one interprets “this
section” as “all the other sentences in this section”. However, such phrases typ-
ically appear in paragraphs where no tests are required and the cycle can be
broken by restricting the references to paragraphs where tests are required. The
second kind of circularity is a semantic circularity which can make the regula-
tion paradoxical, e.g., with self referential sentences. Fortunately, we have not
observed such circularities.

To summarize, if one wishes to use a logic with no support for referring
to other sentences, translating regulation to the logic would involve the follow-
ing steps: (a) resolving circularites to construct a hierarchy of references, (b)
creating derived obligations by moving up the hierarchy, until a set of derived
obligations with no references are obtained, and (c) translating the final set of
derived obligations to logic.

This procedure would not be problematic if there are few cases of references.
In the following section, we discuss the distribution of some lexical categories
in the CFR which suggest that this is a very common case. This makes the
procedure impractical in terms of the effort that would be involved. The logic
that we describe in later sections lets one express references directly, and the
resolution of cirularites and creation of derived obligations happen as part of the
semantics.

2.2 Distribution of Lexical Categories

In the previous section, we saw several examples of how sentences in regulation
refer to others. Natural language offers a variety of devices to relate sentences to
others. A large class of such devices fall under the rubric of anaphora, which is
a means of linking a sentence to the prior discourse. Common examples of such
anaphoric items are pronouns and adverbial connectives, e.g., however, instead,
furthermore, etc.3

Table 1 contrasts the distribution of potentially anaphoric items in the Wall
Street Journal (WSJ) corpus, with the CFR. The first three rows show counts

3 Not all uses of pronouns are anaphoric. Some pronouns are bound by quantifiers,
e.g., every one loves their mother. We report counts based on occurence of strings
and do not distinguinsh between different uses.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

32

Lexical Item WSJ CFR

he, she, him, her 8564 297

it, its 15168 2502

they, their 4500 862

ADV1 3162 2402

ADV2 2453 349

such 662 3028

References to other laws 18509

Table 1. Differences in the distribution of some anaphoric lexical items in the Wall
Street Journal (WSJ) corpus and the CFR. Both the WSJ and the CFR have approx-
imately 1M words.

of pronouns, and the CFR has a markedly lower number of pronouns than the
WSJ. The next two rows show counts of adverbial connectives. ADV1 comprises
of the connectives also, however, in addition, otherwise, for example, therefore,

previously, later, earlier, until and still. These connectives have specialized uses
in the CFR and tend to be quite frequent, with otherwise being the most frequent
in the CFR (517 cases). ADV2 is a set of 48 adverbial connectives annotated
by the Penn Discourse Treebank [4] excluding those in ADV1, e.g., instead, as

a result, nevertheless.4 The connectives in ADV2 are significantly more frequent
in the WSJ than in the CFR.

The last two rows in Table 1 show two common ways of establishing rela-
tionships between sentences in the CFR. The adjective such is a common way of
refering to a set discussed in an immediately preceding law, e.g., such tests. The
last row counts explicit references to other law, by searching for phrases like this

section, or references to section and paragraph identifiers. Of the categories we
considered this is by far the most frequent in the CFR.

3 A Logic that Allows References Between Laws

In this section, we describe the logic that we attempt to translate the regulation
into. The description in this section is brief and informal, and introduces only
the machinery needed to clarify the discussion in Section 4. The logic builds on
ideas from Reiter’s default logic [5] and Kripke’s truth predicate [6]. Consider
our examples again:

(6) Except as specified in (7), every donation of blood or blood component must
be tested for evidence of infection due to Hepatitis B.

(7) You are not required to test donations of source plasma for evidence of infection
due to Hepatitis B.

(6) and (7) are represented as follows:

4 The Penn Discourse Treebank annotates discourse connectives and their arguments.
The current version of the corpus is available at http://www.seas.upenn.edu/˜pdtb

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

33

– 6.o: d(x) ∧ ¬by7(¬�test(x)) � �test(x) and
– 7.p: d(y) ∧ sp(y) � ¬�test(y)

First, consider the formula 7.p: d(y) ∧ sp(y) � ¬�test(y) . This is read as
“It is permitted that if y is a donation of source plasma, then it is not tested
eventually”. The letter p denotes permission, d(y) asserts that y is a donation,
sp(y) asserts that y consists of source plasma, test(y) asserts that y is tested,
and �is the linear temporal logic (LTL) operator eventually. The connective �

is a variant of implication which we will discuss in what follows.
Now consider the subformula by7(¬�test(x)) . This is read as “By the law

(7), x is not tested eventually”. We note that this subformula should hold iff y is a
donation of source plasma. And finally, 6.o: d(x)∧¬by7(¬�test(x)) � �test(x)
can be paraphrased as “It is obligated that if x is a donation and it is not the case
(7) permits that x is not tested eventually, then x must be tested eventually”.
The letter o denotes obligation.

Formulas in the logic are evaluated with respect to sequences of states of an
implementation (in a manner similar to LTL). Each state is associated with a set
of objects and a way of evaluating predicates. Consider a state with an object o1

such that d(o1) and sp(o1) hold, i.e., o1 is a donation of source plasma. Assume
that we have a sequence of states where o1 is not tested.

We first evaluate 7.p: d(y) ∧ sp(y) � ¬�test(y) with respect to all variable
assignments. When y is assigned the value o1, the precondition d(y) ∧ sp(y)
is true, and we annotate the state with ¬�test(o1). This annotation happens
regardless of whether ¬�test(y) is true or false under the variable assignment.

Next, we evaluate 6.o: d(x) ∧ ¬by7(¬�test(x)) � �test(x) . When x is as-
signed the value o1, d(x) is true. To evaluate by7(¬�test(x)) we check if there
is an annotation (ψ) on the state such that ψ ⇒ ¬�test(o1) is valid, i.e., a
theorem in LTL. Since ¬�test(o1) is an annotation, it is an appropriate candi-
date for ψ and we conclude that by7(¬�test(x)) is true. Hence the precondition
d(x) ∧ ¬by7(¬�test(x)) is false, and the obligation is vacuously satisfied.

When considering a non-source plasma donation (o2), no annotation is pro-
vided by 7.p: d(y)∧sp(y) � ¬�test(y) . We will not be able to find ψ such that
ψ ⇒ ¬�test(o2) is valid. This will make the precondition d(x)∧¬by7(¬�test(x))
true, and if a test is not performed eventually, a violation will be detected. Vio-
lations are detected only with respect to obligations. Permissons do not produce
violations and are relevant to conformance only via references from an obliga-
tion.

4 NLP as an Aid in Formalizing Regulation

In this section, we discuss preliminary work on using natural language processing
(NLP) to aid in creating a logic-based representation of regulation. We emphasize
that we use NLP purely as an assistive technology and do not attempt to replace
the human user.5

5 The intended users of our system are designers of software in the organization being
regulated.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

34

We approach the problem using the annotation-learning methodology, which
has been used for a variety of tasks in NLP, e.g., parsing, computing predicate-
argument structure, named-entity recognition etc. The annotation-learning method-
ology proceeds as follows:

1. Define a representation (logic) to be computed from the text
2. Manually describe/annotate how units of text correspond to units of the de-

sired representation. The number of examples manually annotated depends
on the needs of the application.

3. Train a (statistical) learning algorithm to compute the representation.

Our focus upto this point has been on Steps 1 and 2, i.e., designing the logic
and formulating an annotation scheme to associate natural language and logic. In
order for the methodology to be successful, it should be possible for a human to
describe how she went from natural language to logic. Such a description would
take the form of an annotation guideline. For example, [7] gives guidelines for
annotating phrase structure on sentences, and [8] gives guidelines for annotating
discourse relations. The process of formulating guidelines is typically one of
iterative refinement. We begin by fixing a representation, and then annotating
a few sentences with this representation. The problematic cases are analysed,
resulting in revisions to the guidelines, and the process repeats.

We have made three annotation passes over 100 sentences and are in the
process of refining guidelines. The rest of this section describes what we are
attempting to annotate and the difficulties encountered. In Section 4.1, we de-
compose the annotation process into three steps. Some of the key problems
encountered are discussed in Sections 4.2 and 4.3. Section 4.4 discusses related
work. A preliminary discussion of our approach appears in [9]. We have since
extended the logic and annotation guidelines.

4.1 Annotating regulatory sentences with logic

Many logics are semantically adequate for the application of conformance check-
ing. However, to be able to describe or annotate how a statement in logic is
obtained from natural language, the logic and natural language need to be syn-
tactically isomorphic. (8) and (9) are examples of what we mean by syntactically
isomorphic statements in natural language and logic.

(8) Every donation must be tested

(9) 8.o: donation(x) � tested(x)

We note that predicates such as tested(x) need to be refined to accomodate
references between laws, and we discuss this issue in what follows. We now sketch
the procedure for associating (8) and (9).

First, (8) is mapped to the abstract syntax tree (AST):

.

must x

every donation x be tested

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

35

The AST is obtained from (8) by moving the modal must, followed by moving
the phrase every donation to the front of the sentence. While moving a word or
phrase, a variable is optionally left behind as a placeholder.

The second step is to associate leaf nodes which are not the leftmost child
of their parent with components of the formula. donation is associated with the
predicate donation(x), and x must be tested is associated with the predicate
tested(x).

Given the associations for non-leftmost leaves, the leftmost leaves are associ-
ated with operations that combine the associations of their siblings to create an
association for the parent. every is associated with an operation that combines
the associations of its siblings to associate donation(x) � tested(x) with its
parent. Finally, must is associated with an operation that takes donation(x) �

tested(x) and associates (9) with its parent. This procedure for associating nat-
ural language to logic can be broken into three steps:

1. Converting a sentence to an AST
2. Associating the non-leftmost leaves of the AST with components of the logic
3. Associating the leftmost leaves with combination operations

This decomposition of the problem is the one adopted (modulo terminology)
in theoretical linguistics [10]. Of these steps, our goal is to achieve automation
with a good level of accuracy for Step 1. For Steps 2 and 3, we can only envision
partial automation in the immediate future. The goal is to design appropriate
interfaces to assist the user in performing these steps. We now discuss some of
the challenges in associating regulatory sentences with ASTs (Section 4.2). We
then turn to a discussion of some issues related to Steps 2 and 3 in Section 4.3.

4.2 Annotating sentences with ASTs

The AST produced from a sentence is a resolution of scope ambiguities. The
sentence (8) above is simple in comparison to the sentences that one encounters
in regulatory text, where a sentence has multiple noun phrases and modalities.
Consider the following sentence from CFR 610.1 (the AST is shown in Figure
1):

(10) No lot of any licensed product shall be released by the manufacturer prior
to the completion of tests for conformity with standards applicable to such
product.

(11) 10.o: licensedProduct(x) ∧ lotOf(y, x) ∧ priorTo(ϕ) ∧ manufacturer(z) �

¬releasedBy(y,z)

For simplicity, we omit some details from (11). The phrase the completion of

tests for conformity with standards applicable to such product involves a reference
to other laws, i.e., the applicable standards appear in various places in Part 610.
The subformula priorTo(ϕ) in (11) can be formalized using a variant of the
technique discussed in Section 3.

We now discuss some issues related to (10), (11) and the AST in Figure 1.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

36

.

shall x

any
licensed
product

y

No lot of x z

the manufacturer .

prior to the completion ... y be released by z

Fig. 1. AST for (10). The structure for the noun phrase the completion of tests for

conformity with standards applicable to such product is not shown.

Consider again the phrase the completion of tests for conformity with stan-

dards applicable to such product. While we can give this phrase an internal stuc-
ture in the AST, we do not know how to associate it structurally to its formal
interpretation. In other words, from the perspective of translation, the phrase
has to be treated as an idiom of sorts. In annotating a sentence with its AST,
we give such phrases an internal structure and leave the problem of treating it
as an idiom to subsequent steps.

Another issue is the question of what to move. In many linguistic theories,
only quantificational noun phrases, e.g., any product, are treated as candidates
for movement. In our annotation scheme, the constructs that are moved are
noun phrases, coordinated and subordinated phrases/clauses, relative clauses,
and some modals and adverbs. This lets use describe the scopal interaction of
these constructions without having to construct a separate phrase structure tree,
thus saving annotation effort.

With subordinating conjunctions, modals and adverbs, we move only those
constructions that express conditional, temporal or deontic relations. For exam-
ple, a modality such as deemed necessary would not be moved, as we do not
know how to formalize this as an operator. This gives rise to some difficult cases
where the scope of an unformalized construction interacts with another which is
moved:

(12) You must perform one or more such tests, as necessary, to reduce adequately
and appropriately the risk of transmission of communciable disease.

In (12) it is unclear how to order one or more such tests, as necessary and
to reduce adequately and appropriately the risk of transmission of communciable

disease. The intended interpretation of this sentence (which is also unclear) is
“if a test is required, then it must be performed repeatedly until a conclusive

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

37

result is obtained”.6 In such cases, we construct an AST following the surface
order of the phrases.

The point to take from this discussion is that not all the structure provided
in an AST can be mapped directly to logic. On occasion one has to “undo”
some of the movements in order to perform the association. An analogous situa-
tion arises in the problem of alignment in machine translation (between natural
languages). One cannot always find a syntactically isomorphic translation of an
English sentence into French. Certain constructions have to be treated idiomat-
ically. In translating to logic, the number of constructions that we have to treat
idiomatically give us a way to evaluate the syntactic expressive power of the
logic. If there are many such constructions, it would suggest that the logic needs
to be extended. We now discuss issues in associating the leaves of the AST with
formulas in logic.

4.3 Associating the leaves of ASTs with logic

In Section 4.1, we gave the AST for the sentence “every donation must be tested”.
The leaf node “x be tested” was associated with the predicate tested(x). In order
to accomodate references between laws, we need to be able to infer, for exam-
ple, that “if no tests are required, then a test for Hepatitis B is not required”.
Such inferences would not succeed if we used predicates such as tested(x) and
testedForHepatitisB(x) (we need ¬tested(x) ⇒ ¬testedForHepatitisB(x) to
be valid). To handle such cases, we approach the definition of the set of predicates
in two steps, which we describe below.

The first step is creating a schema. A schema is a set of class definitions.
A class definition consists of a set of attribute definitions, and an attribute
definition is a name associated with a type. The types of attributes are taken
to be either atomic values (numbers or strings), references or sets of references.
For example, the class Donation has an attribute named tests which is a set of
references to objects in the class Test.

Predicates are treated as assertions over instances of the schema and are
defined using a description logic. The logic that we use combines graded modal
logic (modal logic with counting quantifiers), and hybrid logic (which allows
one to refer to particular objects). The predicate “testedForHepatitisB(x)” is
formalized as: @x(∃tests : (purpose = Hepatitis B)), read as “at the object
referred to by x, there is an object referenced in the tests attribute and the
purpose attribute of the test object has the value “Hepatitis B”.

Given a set of documents, there are many ways one could create a schema,
depending on domain knowledge and taste. Designing NLP-based interfaces to
aid in the extraction of schemas has been explored in the past [11, 12]. Our goal
is to adapt previous work to the regulatory domain. Both creating the schema
and defining the predicates will require significant manual intervention.

The key challenge in translating natural language to logic (for our applica-
tion) is being able to decompose the problem into steps that depend mostly on

6 The intended interpretation was clarified in a memo released by the FDA.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

38

the text, and steps that depend mostly on domain knowledge. We believe that
the computation of ASTs and the creation of schemas can be tied closely to the
text, and as more documents are formalized better accuracy can be achieved.
The problem of creating predicate definitions would benefit from further decom-
position, and to our knowledge, this is an open problem.

4.4 Related Work

The problem of translating natural language to logic has received much attention
in theoretical linguistics [13]. There are many problems both in the design of logic
and the translation procedure that have yet to be resolved. More recently, there
have been efforts in NLP to automate this translation for some applications.

[14, 15] show that a good degree of automation can be achieved when the text
is constrained. The sentences considered are queries to geographical database,
e.g., “Which states does the river Delaware run through?”. The specific corpus
considered associates each sentence to logic. The associations between compo-
nents of a sentence and logic are computed during the learning phase. While this
approach reduces the annotation effort, the inference of associations during the
learning step becomes more difficult.

[16] describes a corpus annotated using a manually crafted Head-driven
Phrase Structure Grammar (HPSG). In addition to parse trees, a translation
to logic is associated. The logic produced is similar in spirit to the ASTs that
we annotate. We do not adopt this approach directly for two reasons. First,
the annotation of ASTs avoids the overhead of creating phrase structure trees.
Second, the logic produced in [16] introduces a large number of predicates (ap-
proximately one per word), and this makes the formulas large and difficult to
refine. The leaves of the AST are typically phrases, and we have found in case
studies that it is easier to define predicates at this level of granularity.

[17] discusses an approach to computing wide-coverage semantic interpreta-
tion. The goal is to be able to produce approximate translations in first-order
logic and carry out inferences. Similar problems arise in the definition of pred-
icates. The envisioned applications are those for which some errors in the logic
produced are tolerable. For our application, while it may be impossible to avoid
errors, the goal is to provide a correct translation of a sentence. This involves
a careful analysis of modalities, which is not possible in current wide-coverage
techniques.

5 Conclusions and Future Work

We have motivated the need for a formal representation of regulation to acco-
modate references between laws (Section 2). We described, in Section 3, a logic
that accomodates certain kinds of references, i.e., those appearing in precondi-
tions. There is also the need for reference in postconditions, to express naturally
cases where one law cancels obligations and permissions given by another. We
are currently working on extending the logic to allow such references.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

39

In Section 4, we described preliminary work on using NLP to assist in creating
the formal representation of regulation. In NLP, the focus has been on computing
information tied to the surface structure of the sentence, such as parse trees
and predicate-argument structure. However, in formalizing requirements, we are
often interested in inferences drawn from sentences and the context. Relating
these inferences back to the surface structure of a sentence poses interesting
challenges to both NLP and formal methods.

References

1. Breaux, T.D., Vail, M.W., Anton, A.I.: Towards regulatory compliance: Extracting
rights and obligations to align requirements with regulations. In: Proceedings of
the 14th IEEE International Requirements Engineering Conference. (2006)

2. Abrahams, A.: Developing and Executing Electronic Commerce Applications with
Occurrences. PhD thesis, Univeristy of Cambridge (2002)

3. Giblin, C., Liu, A., Muller, S., Pfitzmann, B., Zhou, X.: Regulations Expressed as
Logical Models (REALM). In Moens, M.F., Spyns, P., eds.: Legal Knowledge and
Information Systems. (2005)

4. Miltsakaki, E., Prasad, R., Joshi, A., B.Webber: The Penn Discourse Treebank.
In: LREC. (2004)

5. Reiter, R.: A logic for default reasoning. In: Readings in nonmonotonic reasoning.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1987) 68–93

6. Kripke, S.: Outline of a theory of truth. Journal of Philosophy 72 (1975) 690–716
7. Bies, A., Ferguson, M., Katz, K., MacIntyre, R.: Bracket-

ing guidelines for Treebank II style Penn Treebank Project.
ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual/root.ps.gz (1995)

8. The PDTB Group: The Penn Discourse Treebank 1.0 Annotation Manual. Tech-
nical Report IRCS-06-01, IRCS (2006)

9. Dinesh, N., Joshi, A.K., Lee, I., Webber, B.: Extracting formal specifications from
natural language regulatory documents. In: Proceedings of the Fifth International
Workshop on Inference in Computational Semantics. (2006)

10. May, R.: Logical Form: Its structure and derivation. MIT Press (1985)
11. Overmeyer, S.P., Lavoie, B., Rambow, O.: Conceputal modeling through linguistic

analysis using lida. In: 23rd International conference on Software Engineering.
(2001) 401–410

12. Bryant, B.R.: Object-oriented natural language requirements specification. In:
ACSC 2000, The 23rd Australasian Computer Science Conference. (Jan 2000)

13. Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell (1998)
14. Zettlemoyer, L.S., Collins, M.: Learning to map sentences to logical form: Struc-

tured classification with probabilistic categorial grammars. In: Proceedings of UAI.
(2005)

15. Wong, Y.W., Mooney, R.J.: Learning synchronous grammars for semantic parsing
with lambda calculus. In: Proceedings of ACL. (2007)

16. Oepen, S., Flickinger, D., Toutanova, K., Manning, C.: LinGO Redwoods: A rich
dynamic treebank for HPSG. In: Proceedings of the workshop on treebanks and
linguistic theories. (2002)

17. Bos, J., Clark, S., Steedman, M., Curran, J.R., Hockenmaier, J.: Wide-coverage
semantic representations from a CCG parser. In: Proceedings of COLING. (2004)

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

40

MOVING BEYOND SENTENCE: PENN DISCOURSE TREEBANK

Aravind K. Joshi
Institute for Research in Cognitive Science

University of Pennsylvania 3401 Walnut Street, Suite 400A
Philadelphia, PA 19104-6228

Abstract

In the area of Natural Language Processing (NLP) parsing technology has advanced significantly. The
existence of large scale annotated corpora (at the sentence level), for example, the Penn Treebank (PTB),
has played a key role in the development of NLP techniques such as parsing, at the sentence level. I will
briefly describe the Penn Discourse Treebank (PDTB)^* , a corpus in which we annotate the discourse
connectives (explicit and implicit) and their arguments together with "attributions" of the arguments and
the relations denoted by the connectives, and also the senses of the connectives. Discourse connectives are
like higher level predicates taking clauses as their arguments and thus serve as bridges from the sentence
level to the discourse level. The original motivation for undertaking the development of PDTB was to
provide a resource for lifting sentence level processing to the discourse level. However, now that this
resource has been built, several possible applications are suggested which might be achievable without full
discourse parsing. From this perspective, I believe the PDTB resource will be of interest to the participants
of the Monterey Workshop, 2007^** . * This 1 million-word corpus (same as the WSJ corpus used by the
Penn Treebank (PTB) for syntactic annotation) is expected to be released later this year. ** A preliminary
effort along these lines has been suggested in Dinesh et al. (2007).

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

41

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

42

On the Identification of Goals in Stakeholders Dialogs

Leonid Kof

Fakultät für Informatik, Technische Universität München,
Boltzmannstr. 3, D-85748 Garching bei München, Germany

kof@informatik.tu-muenchen.de

Abstract. Contradictions in requirements are inevitable in early project stages.
To resolve these contradictions, it is necessary to know the rationales (goals) that
lead to the particular requirements. In early project stages one stakeholder rarely
knows the goals of the others. Sometimes the stakeholders cannot explicitly state
even their own goals. Thus, the goals have to be elaborated in the process of
requirements elicitation and negotiation.
This paper shows how the goals can be guessed by systematic analysis of stake-
holders dialogs. The guessed goals have to be presented to the stakeholders for
validation. Then, when the goals are explicitly stated and validated, it becomes
easier to resolve requirements contradictions.

1 Introduction

1.1 Goal-Oriented Requirements Engineering

A goal in requirements engineering is “an objective the system under consideration
should achieve” [1]. Goals build the basis for requirements elicitation process, as they
tend to be more stable than single requirements: For example, the goal “air traffic secu-
rity should be improved” is less likely to change during the project than the requirement
“screening procedure X should be applied from now on.”

In early project stages it is normal that the goals or requirements of different stake-
holders contradict to each other. This makes it even more important, to identify the
goals as early as possible: A conflict in requirements may result from the peculiarities
of the intended solutions, whereas a goal conflict is much more fundamental.

1.2 Case Study: Airport Security Screening

The procedure for goal identification, presented in this paper, is evaluated on a small
case study on an airport screening system. The case study is just a two-page document,
representing an online stakeholder discussion [2]. This document does not contain any
explicitly stated requirements.

There are three stakeholders participating in the discussion: a representative of the
Transportation Security Administration, a representative of the Federal Aviation Ad-
ministration, and a representative of the airport screening and security staff. They all
agree on the goal that the air traffic security should be improved, but they see differ-
ent problems and propose different solutions to the common goal. On the total, they
write just 4-5 paragraphs each, which is surely not enough to identify all requirements.
However, their goals become apparent even in these short statements.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

43

1.3 Outline

The remainder of the paper is organized as follows: Section 2 presents the goals iden-
tified as the result of ad-hoc analysis of the case study document. Section 3 shows how
the goal identification can be systematized, and, finally, Section 4 summarizes the whole
paper.

2 Goals are not Always Explicit: Ad-Hoc Identification of the
Goals in the Case Study

In the ideal world every stakeholder could explicitly state her goals and identify contra-
dictions to other stakeholders’ goals. The small case study, treated in this paper, shows
that this is not the case in the real world. In the stakeholders dialog the goals are mostly
implicit, they manifest themselves in proposals that a stakeholder makes and in objec-
tions to the proposals made by others. For example, in the case study the FAA officer
opens the discussion with the statement that “We have to ban on airplane passengers
taking liquids on board in order to increase security following the recent foiled United
Kingdom terrorist plot.” In this case the goal is explicitly stated, introduced by the
phrase “in order to”. The reaction to this statement shows the goal of the airport screen-
ing staff, rather indirectly: “Technologies that could help might work well in a lab, but
when you use it dozens of times daily screening everything from squeeze cheese to
Channel No. 5 you get False Alarms... so it is not quite ready for deployment!” The
actual goal is the applicability of the screening techniques in day-to-day operation, not
the problem of distinguishing squeeze cheese from explosives.

In the case study we can identify the goals by permanently asking the question, why
a certain statement was made by a discussion participant. In this way we can identify
the following goals of the stakeholders:

– Goals of the Federal Aviation Administration:
• improvement of security: “We have to ban on airplane passengers taking liq-

uids on board in order to increase security following the recent foiled United
Kingdom terrorist plot”

• effectiveness: “We are trying to federalize checkpoints and to bring in more
manpower and technology”

– Goals of the Transportation Security Administration:
• improvement of security

∗ pro-active thinking: “We have yet to take a significant pro-active step in
preventing another attack everything to this point has been reactive”

∗ consistency in regulations: “I think that enforcing consistency in our regu-
lations and especially in their application will be a good thing to do”

– Goals of the airport screening and security staff:
• applicability of the rules in everyday operation: “Technologies that could help

might work well in a lab, . . . , so it is not quite ready for deployment”, “It’s not
easy to move 2 million passengers through U.S. airports daily”

• cost effectiveness for the airlines: “I mean an economic threat is also a threat”

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

44

• consistency in rules: “There are constant changes in screening rules - liquids/no
liquids/3-1-1 rule”

These goals are not contradiction-free. By analyzing the document it is possible to
identify following contradictions:

– proactive thinking, which is a TSA goal, vs. cost effectiveness, which is an FAA
goal. Actually, this is not necessarily a contradiction, but it sounds like a contradic-
tion in the dialog.

– responsibility for the security checks: airlines become responsible, which is an FAA
goal, vs. the authority currently performing the checks remains responsible.

– acceptability of false positives: acceptable for FAA, not acceptable for the screening
staff

Probably due to the fact that each stakeholder considers his own goals as obvious,
no one ever explicitly states them. Instead, each stakeholder presents solutions that
seem adequate to him and explains why he thinks the solutions proposed by others are
problematic. This observation about indirect goal statements will be used in the next
section in order to systematize and potentially automate the identification of goals.

3 Case Study, Systematization of Goal Identification

In the previous section we identified the goals by close inspection of the text. Now we
want to systematize the inspection procedure. To systematize the analysis, we apply two
observations to every paragraph:

– Phrases like “have to”, “in order to”, or similar, directly show the goal. The negation
of such a phrase shows the current state of affairs, that should be improved.

– If the first sentence of the paragraph does not contain any of the above phrases,
it states the reason why the previous paragraph is problematic. In this case, the
negation of this sentence shows the stakeholder’s goal.

3.1 Evaluation of the rule application

Table 1 shows the results of the application of the above rules to the case study. The
application was performed manually by adhering to the rules as strictly as possible. This
means that in some cases not the first sentence of the paragraph but the first meaningful
one was taken into consideration. For example, statements like “come on”, “well. . . ”,
“we can deal with it” were ignored, as they do not contribute to the identification of
the goals. For this reason Table 1 sometimes lists other than the first sentence of the
paragraph.

It is important to emphasize that the negations listed in Table 1 were not constructed
by purely syntactical deletion or adjoining of “not” at some position in the sentence.
Such syntactical negations had to be generalized. For example, “It’s not easy to move
2 million passengers. . . ”, statement from paragraph 4, was negated to “It should be easy
to move 2 million passengers. . . ” and then generalized to “The screening system has to

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

45

Sentence State of the art/Goal Evaluation
1 We have to ban on airplane passen-

gers taking liquids on board in order to
increase security following the recent
foiled United Kingdom terrorist plot.

State of the art: we do not ban passen-
gers taking liquids, terrorist plot like in
the UK is possible. Goals: ban passen-
gers taking liquids, increase security

2 Technologies that could help might
work well in a lab, but when you use it
dozens of times daily screening every-
thing from squeeze cheese to Channel
No. 5 you get False Alarms ...

Goals: technologies should work not
only in the lab, without false alarms

Goal correctly
identified

3 Generating false positives helped us
stay alive; maybe that wasn’t a lion that
your ancestor saw, but it was better to
be safe than sorry.

No goal identifiable —

4 It’s not easy to move 2 million passen-
gers through U.S. airports daily.

Goal: the screening system has to han-
dle 2 million passengers daily

Goal correctly
identified

5 We can deal with it. What if you guys
take frequent breaks?

No goal identifiable —

6 Sounds good though we do take breaks
and are getting inspected.

No goal identifiable —

7 We have yet to take a significant pro-
active step in preventing another attack
everything to this point has been reac-
tive.

State of the art: We do not take pro-
active steps. Goal: We have yet to take
pro-active steps

Goal correctly
identified

8 On each dollar that a potential attacker
spends on his plot we had to spend
$1000 to protect.

Goal: we should not spend too much
on the screening procedure, it should
remain affordable

Goal correctly
identified

9 We need to think ahead. For instance,
nobody needs a metal object to bring
down an airliner, not even explosives.

Goal: identify other types of objects to
be banned

Goal correctly
identified

10 Airlines need to take the lead on avia-
tion security.

Goal: Airlines need to take the lead on
aviation security, not FAA.

FAA Goal
correctly
identified

11 Sir, a lot of airlines are not doing well
and are on the Government assistance.

Goal: Airlines should not be responsi-
ble for additional cost-intensive tasks.

Goal correctly
identified

12 I think that enforcing consistency in
our regulations and especially in their
application will be a good thing to do.

State of the art: regulations are in-
consistent Goal: regulations should be
consistent.

Goal correctly
identified

13 Ok, we had very productive discussion No goal identifiable —
Table 1. Application of the hypothesis to the case study

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

46

handle 2 million passengers daily”. In a similar way, “On each dollar that a potential
attacker spends on his plot we had to spend $1000 to protect” was negated to “On each
dollar that a potential attacker spends on his plot we should not spend $1000 to protect”
and generalized to “The screening procedure should remain affordable”.

It is easy to see that Table 1 contains all the goals identified by ad-hoc analysis in
Section 2. However, it is necessary to bear in mind that the case study was rather small
and that both analysis runs, ad-hoc and systematic, were performed by the same person,
which makes the results potentially biased. Thus, to properly evaluate the rules for goal
identification, a controlled experiment or computer implementation of the procedure is
necessary.

3.2 Possible Implementation

To implement the introduced procedure for goal identification, it is necessary to solve
two problems:

– It is necessary to define what a meaningful sentence is, in order to analyze the first
meaningful sentence of every paragraph.

– Negation is not always possible by simple deletion or adjoining of “not”. Further-
more, negated sentences have to be generalized.

The first problem is relatively simple from the point of view of computational lin-
guistics: We could eliminate sentences without grammatical subject, like “come on”
and “well. . . ”, as well as questions, like “What do you suggest?” in the case study
document. This would work for most paragraphs of the considered case study.

The second problem, the negation, is much more difficult. To cope with the gram-
matical negation, we can try to translate every sentence to discourse representation
structure (DRS) [3, 4]. DRS can be translated to first-order logic, thus, when perform-
ing negation on the DRS level, we would obtain a logical negation. On the DRS level
we could negate different pieces of the DRS, which would correspond to the negation
of different clauses of the sentence. Then, we would have to present different nega-
tions to the user in order that she selects the correct one. In this way we can get, for
example, from “On each dollar that a potential attacker spends on his plot we had to
spend $1000 to protect” to “On each dollar that a potential attacker spends on his plot
we should not spend $1000 to protect”. However, even when we have the grammatical
negation, we have to generalize it. For example, in the case study we had to generalize
“On each dollar that a potential attacker spends on his plot we should not spend $1000
to protect” to “The screening procedure should remain affordable”. This is impossible
without profound knowledge of the world, so-called common sense.

4 Summary

In this paper a method for identification of stakeholders’ goals by analyzing stakehold-
ers’ dialogs was introduced. This method bases on two key assumptions:

– Sentences containing certain keywords directly represent the goal.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

47

– Otherwise, if the sentence is the first meaningful sentence of the paragraph, its
negation represents the goal.

This strategy for goal identification is very similar to the strategy proposed by van Lam-
sweerde [5], consisting of three rules:

– Sentences containing certain keywords directly represent the goal.
– Asking the “why” question for already identified goals helps to identify more ab-

stract goals.
– Asking the “how” question for already identified goals helps to identify more con-

crete goals.

The second rule used in this paper, the negation rule, can be seen as an application of the
why-rule to the dialog: We are just asking the question, why a particular statement was
made. One of the reasons to start a new dialog segment is stakeholder’s disagreement
with the previous proposal. In this case the negation of the first statement shows the
reason for the disagreement, which is some goal of the stakeholder.

Explicit goal identification is important for several reasons. Goals serve to achieve
requirements completeness and pertinence, managing requirements conflicts, etc [1].
The presented approach is especially suitable to manage requirements conflicts when
negotiating requirements: In the Win-Win negotiation approach [6] requirements con-
flicts are resolved in such a way that the goals of every stakeholder remain satisfied. In
the case of goal conflicts such a resolution is impossible. Thus, identification of goals
and goal conflicts, as in the presented paper, contributes to the identification of potential
problems early in the development process.

References

1. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: Proceed-
ings of the 5th IEEE International Symposium on Requirements Engineering, IEEE Computer
Society (2001) 249–263

2. Case Study: Air Traveling Requirements Updated (Blog scenario): (2007)
http://fabrice.kordon.free.fr/Monterey2007/invitation_files/
case-1.pdf, accessed 06.04.2007.

3. Bos, J., Clark, S., Steedman, M., Curran, J.R., Hockenmaier, J.: Wide-coverage semantic
representations from a CCG parser. In: COLING ’04: Proceedings of the 20th international
conference on Computational Linguistics, Morristown, NJ, USA, Association for Computa-
tional Linguistics (2004) 1240

4. Bos, J.: Towards wide-coverage semantic interpretation. In: Proceedings of the 6th Interna-
tional Workshop on Computational Semantics (IWCS 6). (2005) 42–53

5. van Lamsweerde, A.: Requirements engineering in the year 00: a research perspective. In:
ICSE ’00: Proceedings of the 22nd international conference on Software engineering, New
York, NY, USA, ACM Press (2000) 5–19

6. Grünbacher, P., Boehm, B.W., Briggs, R.O.: EasyWinWin: A groupware-supported method-
ology for requirements negotiation (2002) http://sunset.usc.edu/research/
WINWIN/EasyWinWin/index.html, accessed 06.04.2007.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

48

Profiling and Tracing Stakeholder Needs

Pete Sawyer, Ricardo Gacitua, Andrew Stone

Lancaster University, Lancaster, UK. LA1 4WA

{sawyer, gacitur1}@comp.lancs.ac.uk, a.stone1@lancs.ac.uk

Abstract. The first stage in transitioning from stakeholders’ needs to formal designs
is the synthesis of user requirements from information elicited from the
stakeholders. In this paper we show how shallow natural language techniques can be
used to assist analysis of the elicited information and so inform the synthesis of the
user requirements. We also show how related techniques can be used for the
subsequent management of requirements and even help detect the absence of
requirements’ motivation by identifying unprovenanced requirements.

1 Introduction

Since “the majority of requirements are given in natural language, either written or orally
expressed” [1] the application of natural language processing (NLP) to Requirements
Engineering (RE) has been investigated by many researchers. In this paper we discuss the
use of shallow NLP techniques in the early stages of transitioning from stakeholders’ need
to formal designs; the synthesis of user requirements that are informed by information
elicited from the stakeholders and the subsequent management of this information. We
also consider the conundrum posed by missing or suppressed information and the perhaps
paradoxical potential for shallow techniques to detect the absence of information.

2 Assisting the Synthesis of User Requirements

Among the most challenging applications of NLP in RE have been problems where the
language used is uncontrolled [2]. Uncontrolled language is characteristic of early-phase
RE [3] where the stakeholders not only hold different perspectives on the problem domain
but express their needs in ways that often fail to conform to conventions of language use.
The three bloggers in the airport security case study [4] illustrate this well. Even ignoring
the divergence of semantics and pragmatics of their perspectives on the problem, a
number of lexical and syntactic characteristics of the text pose real natural language

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

49

processing problems, such as idioms (‘come on!’), implicit context (‘we can deal with it.’)
and grammatical errors and typos (‘We have to ban on ..’, ‘Channel No. 5’).

The characteristics illustrated by the airport security blog illustrate why the automatic
synthesis of user requirements is way beyond the current state-of-the-art. Useful support
can be provided, however. A number of researchers have investigated the identification of
domain concepts by analysis of the text using, for example, frequency profiling [5] and
lexical affinities [6]. Such work can serve to help identify entities in the problem domain
and their relationships, reveal key terms and populate glossaries. For example, in the
airport security blog, the left hand pair of columns in Table 1 shows a ranked list of the
ten words and their parts of speech that occur with a frequency that most exceed the
frequency predicted by the 100 million word British national corpus (BNC). Note for
instance that even though “oxidizer” appears only twice (once in singular and once in
plural form) in the 603 word blog, twice is still significantly more frequently than
predicted by its rate of occurrence in the BNC.

There are several interesting things to note here. The first is that “screen”. “screening”
and “screener” all share the same word stem so could have been collapsed into a single
term. That hasn’t been done because in the blog they represent sufficiently different
concepts to make it worth distinguishing between them. Note that “screen” is a verb while
the other two terms are nouns. Even “screener” and “screening”, which are both nouns,
are distinguished by the different semantic tags assigned by the tool we used to generate
the data (Wmatrix [2]). “screening” is classified using the semantic tag A10 Open/closed;
Hiding/Hidden; Finding; Showing. “screener” is classified as Z99 Unmatched. In other
words, the semantic tagger failed to recognize “screener”. Interestingly, there are six
occurrences of “screening” in the text. Four are nouns and two are verbs. The verb form of
“screening” is not as over-represented as the noun form so it does not appear in the top
ten.

The two occurrences of “oxidizer” causing it to appear as the sixth most over-
represented term illustrates why the application of statistical techniques to small volumes
of text tends to yield results that should be interpreted with caution. The fact that a single
blogger mentioned the term twice does not per se mean that it represents a significant
concept within the bloggers’ universe of discourse. That it might be significant can only
be determined by a skilled analyst.

The third and fourth columns in Table 1 show the same as the first and second columns
but this time, instead of restricting our analysis to the blog, we have included a small
corpus of documents containing approximately 8000 words. This corpus was compiled
from a mixture of press reports about airport security and advice on security published on
travel websites. We cannot claim that it is truly representative of the domain. However, it
is interesting to compare the first and third columns to help understand the focus of the
blog within the general domain of airport security. If we had more confidence in the
relevance and degree of consensus represented by the the corpus, we could use the results
of the analysis as the starting point for the construction of a domain ontology that could be
used for the reuse of knowledge across airport security applications. Given the degree of

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

50

uncertainty over the veracity of our corpus, the most we can claim in this instance is that it
reveals some of the general context of the bloggers’ conversation.

Table 1. The 10 Most Over-Represented Words in the blog and a domain corpus

Blog Blog + domain corpus Blog + domain corpus
Term PoS Term PoS Verb
screener noun airport noun access
security noun security noun screen
airport noun passenger noun check
administration noun new adj profile
government noun travel noun travel
oxidizer noun system noun identify
screening noun capta noun Travele (sic)
screen verb surveillance noun carry
tsa noun flight noun allow
ban verb luggage noun capture

The fifth column of Table 1 is also a ranked list extracted from the blog and the corpus.

This time, however, we have filtered it on verbs to show only the action words. It is
interesting to note that the verb “screen” reappears as a significantly over-represented
action, as do “check”, “profile”, “identify” and other words related to the active
application of security checks in airports.

In our earlier work [2], we elaborated on the use of statistical techniques for analyzing
elicited requirements information. We analyzed the use of corpus-based frequency
profiling, filtering on part-of-speech and on semantic class, and the use of lexical
affinities. We concluded that frequency profiling yields the best performance of any
individual technique. However, while generally performing relatively poorly when used in
isolation, the other techniques tended to complement frequency profiling. Hence, for
example, while frequency profiling will typically fail to identify some of the significant
concepts present in a corpus of domain documents, at least some of the unidentified
concepts will be statistically over-represented amongst the words that co-occur with the
concepts that have been identified. Such co-occurrences show up as lexical affinities, so
lexical affinity detection is a useful component of an analyst’s toolkit which also supports
frequency profiling. Similarly, other shallow NLP techniques are often able to provide a
useful and complementary view of the information embodied in requirements text.

NLP techniques will never be capable of automating the derivation of requirements.
Despite this, they have a role in assisting the human analyst’s task of making sense of the
myriad sources of information needed to inform the synthesis of user requirements.
Whether NLP-assisted or not, information can be lost during the synthesis process,
particularly when that information never existed in explicit form. The next section
examines the role that shallow NLP techniques can play in recovering this lost
information.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

51

3 Upstream Trace Recovery

The process of user requirements synthesis is the first step in transitioning from the
informal to the formal, although it is far from a simple activity and may involve (for
example) goal modeling, scenario derivation, brainstorming and much else. Given the
complexity of the process, it is good practice to record the synthesized requirements’
motivation since maintenance of an explicit record helps inform trade-offs and allows
backwards tracing to the stakeholders or information sources that motivated the
requirements. Such upstream or pre-requirements specification tracing (pre-RST) [7] is,
for a variety of reasons, commonly neglected.

Figure 1. An Organic Layout Algorithm Used to Display Pre-RST Derives Relationships

Down-stream tracing (post-RST) is also commonly neglected, despite the ready
availability of commercial requirements management (RM) tools that directly support
down-stream tracing. This failure of basic RM practice has motivated several researchers
to investigate automatic down-stream trace recovery. Techniques borrowed from
information retrieval (IR) have been shown to be capable of inferring relationships
between requirements at different levels of elaboration [8, 9, 10]. We have applied similar
techniques to up-stream trace recovery using our Prospect tool [11].

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

52

The results of our evaluations indicate that the IR technique at the core of Prospect,
latent semantic analysis (LSA) [12], is capable of inferring derives relationships between
user requirements and the elicited knowledge that motivated them. In other words, a user
requirement that participates in a semantic relationship with passages of elicited text is
likely to have been motivated in some way by the information embodied by the elicited
text. Figure 1. shows a cluster of several hundred requirements and passages of text from
the information elicited form the stakeholders in a project. The scale is too small to see
clearly here but requirements and “source” passages are represented as nodes with
different colours. The arcs represent derives relationships and the tight clusters reveal
where the multiplicity of relationships is high.

Most of the automatic trace recovery tools that have been developed use a measure of
the lexical similarity between two requirements statements to infer semantic relatedness.
The technique used by Prospect, LSA, also measures lexical similarities but is able to do
more than count the number of co-occurring words. Prospect can infer a relationship
between (say) a user requirement and passages of elicited information even when the
terms used are somewhat dissimilar, provided that the terms that are used occur
sufficiently commonly in similar contexts for LSA to infer synonymy or polysemy.
Hence, LSA can recognize concepts than underlie lexical signifiers. For example,
“airline” and “carrier” are often used as synonyms of the same underlying concept, and
LSA offers a mechanism to recognize this without requiring the manual construction of a
glossary.

In practice, Prospect achieves a level of recall and precision broadly consistent with the
figures shown in Figure 2 which are derived from one of our case studies. Note that the
“Threshold” value that calibrates the X axis represents the tool’s adjustable sensitivity.
The higher the threshold of similarity, the better the precision (i.e. fewer false positives)
but the lower the recall (i.e. more valid relationships are missed). The technique will
always produce false positives, but our experiments with user groups suggest that analysts
can tolerate surprisingly high levels of imprecision in return for high recall.

We ran Prospect on the airline security case study [4]. The blog entries are not
requirements, although they contain information that an analyst might use to inform the
synthesis of requirements. Similarly, the corpus of documents is not representative of
material an analyst would elicit from stakeholders, but might plausibly embody
knowledge that an analyst could use to develop an understanding the problem domain.
Relationships detected between blog entries and passages of corpus text do not represent
the derives relationships that Prospect was designed to identify, but other forms of
relationship might be expected to exist. Prospect detected significant semantic
relationships between six of the thirteen blog entries and passages of text from the corpus.
A significant number of passages from the corpus showed a relationship with the first blog
entry:

“We have to ban on airplane passengers taking liquids on board in order to increase
security following the recent foiled United Kingdom terrorist plot. We are also working
on technologies to screen for chemicals in liquids, backscatter, you know?”

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

53

One of the interesting things about this entry, and the blog as a whole, is that there is no
explicit rationale for why passengers should be prevented from carrying liquids on board
an airplane. However, the rationale is provided by several of the corpus passages that
Prospect linked with the blog entry, including, for example:

“Claims that terrorists were plotting to use liquid explosives suggest they understood
the limitations of current bomb detection methods, experts say.”

Note that the common occurrence of “liquid”/”liquids” in the blog and corpus passages
suggests that the relationship was inferred from lexical similarity only. This supports the
good performance reported by techniques based purely on lexical similarity, such as [8]
but offers no insight into the advantages of using the more computationally-intensive
LSA.

Figure 2. Recall and Precision Achieved by Prospect

LSA’s tolerance of inconsistent vocabulary can be tested by our earlier observation that
we would expect the synonymy of “airline” and “carrier” to be recognized. The corpus
contains four passages of text that use the term “carrier” and many more that use “airline”.
Prospect identified relationships between two of the passages that used “carrier” with
passages using “airline”. That the recall was less than 100% reflects the fact that the
weight that LSA attaches to two passages of text is proportional to the number of terms
and concepts they share. A single shared concept such as that represented by
“airline”/“carrier” is often insufficient in itself to show up as a strong degree of
relatedness. This is not a failing of LSA; the fact that two passages of text mention either
“airline” or “carrier” need not mean that they share deep semantic meaning. An example

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

54

of genuine semantic relatedness is illustrated by the following two passages of text that
Prospect correctly inferred a relationship between:

“Travelers are urged to check with airlines in advance.”
“Passengers are strongly advised to check the website of their carrier or airport before

travelling.”
Note that the semantic relatedness is revealed not only by the synonyms “airline” and

“carrier”, but also by the shared term “check” and another pair of synonyms: “traveler”
and “passenger”.

Our simple experiment confirmed our hypothesis that interesting semantic relationships
would exist between blog entries and the corpus. In addition to offering an insight into the
advantages of LSA over techniques based on purely lexical similarities, the experiment
suggests that the utility of tools like Prospect might extend beyond trace recovery to
provide more general assistance for analysts. However, there is one utility of tools such as
Prospect that is revealed by performing trace recovery and which we explore in the next
section.

4 Unprovenanced Requirements

An interesting phenomenon that is commonly revealed by applying Prospect to upstream
trace recovery is that of unprovenanced requirements. If the elicited information exists in
text form, Prospect if typically able to infer derives relationships between user
requirements and passages of the elicited text. The strength of a relationship between a
user requirement and passages of elicited text can vary according to the lexical similarities
that exist between them, but with the tolerance of synonymy and polysemy that LSA
affords. In the case studies conducted so far, a minority of requirements appear to have no
relationship with the elicited text. The largest of our case studies was conducted on a live
project and we were able to interview the analysts to validate the results. Their responses
showed a strong correlation between requirements identified by Prospect as
unprovenanced and those where the requirements had been “invented” by application of
the analysts’ domain knowledge.

Clearly, invention is part of the job of an analyst because they must use their
knowledge and experience to creatively add value to the needs stated by the stakeholders.
One common reason for the need for invention is that the information elicited from the
stakeholders is incomplete. Incompleteness can be due to a number of reasons, but one is
that the stakeholders hold information that they don’t articulate either through deliberately
withholding it or (we assume, more commonly) unconsciously withholding it. Knowledge
that is never articulated, either because it is hard to articulate, or is so integral to the
holder’s model of the world that they don’t feel the need to make it explicit is tacit [13,
14, 15].

A number of elicitation methods exist that help cope with tacit knowledge or concealed
information [16]. EasyWinWin [17], for example, is designed to identify, refine and reach

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

55

consensus on the requirements for a system over a series of steps. These steps are
carefully structured using prompts and the staged revelation of stakeholders’ requirements
and priorities to tease out concealed information. We hypothesize that techniques such as
LSA could enhance tool support for such methods by, for example, tracing the evolution
of stakeholders’ requirements over stages in the elicitation process and helping highlight
discontinuities that might be revealing of concealed information or tacit knowledge.
Hence, in addition to helping detect the effect of tacit knowledge in sets of requirements,
LSA may be useful in drawing tacit knowledge and concealed information out of
stakeholders during requirements elicitation.

5 Conclusions

In [18], Kevin Ryan offered a critique of the application of natural language processing
techniques to requirements engineering problems. Among Ryan’s key observations was
that it was both unfeasible and undesirable to automate the derivation of requirements
from natural language text. Fourteen years later, Ryan’s view still holds. Instead, work has
focused on using NLP techniques as a tool to aid the human analyst. We argue that in the
early stages of RE where the language is inevitably uncontrolled, shallow NLP techniques
hold real promise as the basis for viable analysts’ tools.

One of the reasons why the automation of the analyst’s task is unfeasible and
undesirable is that much of the information that the analyst needs in order to formulate
appropriate requirements is likely to be unstated. We have described how latent semantic
analysis, when applied to up-stream trace recovery can highlight disconnects between the
formulated requirements and the information elicited from stakeholders. It appears that
this disconnect is sometimes a symptom of missing or incomplete information, which in
turn can be caused by stakeholders failing to articulate their knowledge. We believe that
the ability to detect evidence of tacit knowledge is useful in itself and may form a
component in a toolset for improving how tacit knowledge is handled within RE.

References

[1] http://fabrice.kordon.free.fr/Monterey2007/home.html
[2] Sawyer, P., Rayson, P., Cosh, K.: “Shallow Knowledge as an Aid to Deep Understanding in

Early-Phase Requirements Engineering”, IEEE Transactions on Software Engineering, 31
(11), November 2005.

[3] Yu, E. (1997) “Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering”, Proc. Third IEEE International Symposium on Requirements Engineering
(RE’97), Annapolis, MD. USA.

[4] http://fabrice.kordon.free.fr/Monterey2007/invitation_files/case-1.pdf

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

56

[5] Lecœuche, R. (2000) “Finding comparatively important concepts between texts”, Proc.
Fifteenth IEEE International Conference on Automated Software Engineering (ASE’00),
Grenoble, France.

[6] Maarek, Y. and Berry, D. (1989) “The Use of Lexical Affinities in Requirements
Extraction”, Proc. fifth International Workshop on Software Specifications and Design,
Pittsburg, Pa, USA

[7] Gotel, O., Finkelstein, A.: “An analysis of the requirements traceability problem“, Proc. 1st
International Conference on Requirements Engineering (ICRE’94), Colorado Springs, Co.,
USA, April, 1994.

[8] Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M., Karlsson, J.: “A Feasibility
Study of Automated Support for Similarity Analysis of Natural Language Requirements in
Market-Driven Development”, Requirements Engineering, 7 (1), 2002.

[9] Huffman-Hayes, J., Dekhtyar, A., Karthikeyan Sundaram, S.: “Advancing Candidate Link
Generation for Requirements Tracing: The Study of Methods”, IEEE Transactions on
Software Engineering, 32 (1), January 2006.

[10] Cleland-Huang, J., Settimi, R., Romanova, E., Berenbach, B., Clark, S.: “Best Practices for
Automated Traceability”, IEEE Computer, 40 (6), June 2007.

[11] Stone, A., Sawyer, P.: “Identifying Tacit Knowledge-Based Requirements”, IEE
Proceedings Software, 153 (6), December 2006.

[12] Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: „Indexing by latents
semantic analysis“, J. Am. Soc. For Inf. Sci., 41 (6), 1990.

[13] Polanyi, M.: The Tacit Dimension, Peter Smith, Gloucester, Ma. USA, 1983.
[14] Nonaja, I, Takeuchi, H.: “A theory of organizational knowledge creation”, Int. J. of

Technology Management, 11 (7/8), 1996.
[15] Busch, P. and Richards, D.: “Acquisition of Articulable Tacit Knowledge”, In Proc. Pacific

Knowledge Acquisition Workshop (PKAW'04), in conjunction with The Eighth Pacific Rim
International Conference on Artificial Intelligence, August 9-13, 2004, Auckland, New
Zealand, 87-101.

[16] Collins, H.: “What is tacit knowledge”, in Schtzki, T. Knorr, C. & von Savigny, E. (Eds) The
practice turn in contemporary theory, Routledge, London and New York, 2001.

[17] Grünbacher, P., Briggs, R.: “Surfacing Tacit Knowledge in Requirements Negotiation:
Experiences using EasyWinWin”, Proc. 34th Hawaii International Conference on System
Sciences, Hawaii, USA, 2001.

[18] Ryan, K.: “The Role of Natural Language in Requirements Engineering”, Proc. First IEEE
International Symposium on Requirements Engineering (RE’03), San Diego, Ca. USA,
1993.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

57

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

58

A Case for ViewPoints and Documents

Michael Goedicke

Specification of Software Systems, ICB, University of Duisburg-Essen, Essen, Germany
Michael.Goedicke@icb.uni-due.de

Position Statement

In this contribution we view the airport security case study as multiple viewpoints in
order to express the three stakeholders’ views. Since there is an obvious “non
convergence” in their views it is important to address the various sources of
inconsistency between viewpoints. We advocate addressing not only “traditional”
inconsistency to drive development forward but include other forms of imprecision
like ambiguity and vagueness. In particular it is necessary to combine the viewpoint-
oriented style with a document-oriented style of software development, serving
management needs.

The Issues and Perspectives of the Case Study

The log representing the discussion between airport security related stakeholders is a
typical exchange of ideas related to different layers of a given problem area. As usual the
stakeholders perceive the problem area in different ways. Thus, the various utterances
give rise to numerous problems to create a common understanding and – as we envisage
the follow up of this discussion is not the creation of a set of agreed measures to improve
air traffic security. If each stakeholder is required to write a summary of actions points as
a result of the discussion quite diverging actions will arise. While the TSA representative
addresses high level goals and deficiencies regarding political and security goals like
“felt” security, the FAA representative is concerned with the financial performance of the
processes and technologies employed and finally the ground personnel representative is
concerned with the actual procedures and shortcomings of the human resources at hand.

Thus it is certainly clear that a view-oriented approach like the ViewPoint approach [1]
is helpful in analyzing the situation sketched in the case study. The various stakeholders
can be presented using ViewPoints and given an appropriate representation scheme – first
order logic e.g. xlinkit [3] or temporal logic will certainly fulfill the task – inconsistencies
can be made explicit. However, this is only the starting point.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

59

 Michael Goedicke

As was put forward in [2] there has been the emphasis on living with inconsistencies
and providing some repair actions if possible. The overall processes involving ViewPoints
and related global properties (like convergence i.e. removal of essential inconsistencies)
have to be elaborated and refined. Especially, if one regards requirements engineering as a
set of continuous activities in parallel to creating other development artifacts, it is an
important goal to integrate a document-oriented approach into the otherwise distributed
views. Thus the challenge is to integrate document centric views – in many cases
expressed today in some UML dialects or sublanguages – with more interaction centric
views as represented by the blog of the three stakeholders of the case study.

While much of our work was concerned with the first type of integration and
inconsistencies the latter is quite important and different approaches have to be used to
achieve meaningful results from representing the stakeholders by different views
explicitly. Earlier work [4] suggests that this is possible by modeling the involved layers
(organization, informal relationships etc.) but additional results can be achieved if other
forms of imprecise information are represented as well.

A contribution to this is if vagueness is represented explicitly as e.g. in the SeeMe
approach [5][6]. The characteristic of the diagrammatic SeeMe approach is to introduce
explicit graphical elements in order to indicate ambiguities, vagueness or other type of
imprecision (ellipses, question marks, or arcs with unspecified source / target element in a
diagram). Many of the statements recorded in the blog cannot be transformed directly into
(UML-)specs but are more in the sense of recommendations, suggestions, assumptions or
even (implicit) suspicions. In addition, work in the area of natural language processing
(e.g. based on the work of Berry and Kamsties [7]) will be helpful to identify such sources
of imprecision for the creation of SeeMee-models. Thus blogs as in the case study could
be used in a (semi-)automatic way to derive SeeMee-Models which in turn can be fed into
related ViewPoints using e.g. UML notations. The latter process can be possibly described
by structural transformations.

The figure below sketches this process: ViewPoints using natural language (NL) are
used to derive SeeMe-models (SeeMe) which are used to hammer out commonalities and
differences based on the identified incomplete, vague and/or ambiguous pieces of
specification. From the agreed model “normal” use cases and other types of precise
specifications are derived and analyzed.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

60

A Case for ViewPoints and Documents

Finally an additional challenge is to define how – by enacting individual views – the
overall process can be managed to generate progress. Obviously, this is not automatic
since it needs the cooperation of the involved stakeholders to achieve progress.

References

[1] A. Finkelstein, A. Kramer, J. Nuseibeh, B. Finkelstein, L. Goedicke, M. Viewpoints: A
Framework for Integrating Multiple Perspectives in System Development in: Intl. Journal of
Software Engineering and Knowledge Engineering 2(1): 31-57, 1992

[2] Nuseibeh, B. Kramer, J. Finkelstein, A. Viewpoints: meaningful relationships are difficult!, Proc.
ICSE'03, Portland, Oregon, USA, May 2003, IEEE CS Press.

[3] Nentwich,C. Capra, L. Emmerich, W. Finkelstein, A. xlinkit: a Consistency Checking and Smart
Link Generation Service, ACM Trans. On Internet Technology, 2(2) 151 – 185, May 2002

[4] Piwetz, C. Requirements Definitions for Groupware Systems – A View-Oriented Approach,
Dissertation, Univ. Duisburg-Essen, 2001

[5] Herrmann, Th. Loser, K.-U. Vagueness in models of socio-technical systems. In: Behaviour and
Information Technology. Vol. 18, no. 5, pp 313-323, 1999

[6] Herrmann, T. SeeMee in a Nutshell, Technical Report Univ. Bochum, 2006 https://web-
imtm.iaw.ruhr-uni-bochum.de/pub/bscw.cgi/0/208299/30621/30621.pdf

[7] Berry, D.M. Kamsties, E. Ambiguity in Requirements Specification in Perspectives on Software
Requirements, Leite, J. Dorn, J. (EDs), Springer, 2003

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

61

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

62

Getting the Details Right

Lori A. Clarke
Department of Computer Science

University of Massachusetts
Amherst MA 01003

Abstract

Requirements specifications are usually long, natural-language documents, which in
addition to describing the high-level functionality of the subject system, provide a relatively
long list of “shall” or “should” conditions, which we refer to as property specifications.
These informal property specifications are often the basis for formally specified property
specification that can be subsequently used in the verification of the system design or
implementation or in test planning and test case generation. This talk will describe our
experiences going from high-level informal descriptions in natural language to
mathematically precise specifications using PROPEL, a system that helps in the elicitation
and representation of the many details that must be considered. Examples will be drawn
from the UMASS Medical Safety Project, where medical professionals are working with
computer scientists to define and improve life-critical medical processes.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

63

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

64

Model-Driven Prototyping Based Requirements Elicitation

Jicheng Fu, Farokh B. Bastani, and I-Ling Yen

Department of Computer Science
The University of Texas at Dallas

P.O. Box 830688, EC 31
Richardson, TX 75083-0688

{jicheng.fu@student.utdallas.edu, bastani@utdallas.edu, ilyen@utdallas.edu}

Abstract

This paper presents a requirements elicitation approach that is based on model-driven prototyping. The model-
driven approach fits naturally in evolutionary prototyping because modeling and design are not treated merely as
documents but as key parts of the development process. This paper proposes a component-based program
synthesis technique to automate business/logic code synthesis. It has a sound theoretical basis and is able to
generate reliable software. Combined with transformation, our approach not only facilitates rapid prototyping, but
also achieves high reliability.

Keywords: Requirements Elicitation, Prototyping, Component-Based Software Development, Code Patterns,
Model-Driven Development

1 INTRODUCTION

The primary measure of success in a software system is the degree to which it meets the purpose for which it is
intended [1]. Therefore, requirements engineering activities are vital in ensuring successful projects.

Prototyping is a popular requirements elicitation technique and is especially useful when there is a great deal of
uncertainty or when early feedback from stakeholders is needed [2]. Prototypes can concretely present the system
operation and facilitate design decisions. Therefore, the primary advantages of prototyping are reduced time and
cost, and more user involvement. However, prototyping has some disadvantages, such as requirements that are not
traceable and the potential for patchwork programs [3].

Recently, use cases have become popular for capturing functional requirements. Use cases document initial
requirements and provide scenarios illustrating interactions with end users or other systems to achieve specific
business goals. However, use cases are not good for capturing non-functional requirements [3].

The use of model-driven approaches in requirements engineering is especially amenable to model-driven
development (MDD) process and agile software development. UML 2.0, developed to support MDD, has changed
the view that UML diagrams only serve as temporary documents and will be put aside at later points during
development. Combined with OCL (Object Constraint Language), UML is able to specify models in a formal way.
OCL is a declarative and precise specification language, which has no side-effects and does not change the state of
the system [4]. It enables errors to be found early in the life-cycle, when fixing a fault is relatively cheap.

Traceability is another helpful asset of model-driven development. It makes the development process amenable to
requirement changes. It is always easier to indicate what part of a Platform Independent Model (PIM) is affected by
the changed requirements than to determine code segments that must be modified. When parts of the code can be
traced back to elements in the PIM, it would be much easier to make an impact analysis of the requested changes
[5].

The proposed approach is based on an iterative and evolutionary model-driven development process. It combines
the advantages of prototyping and use cases in requirements engineering. Transformations that map models to the
next level are typically used in Model-Driven Architecture (MDA) [9] and Model-Driven Software Development
(MDSD) [6]. However, there are some doubts about the practicality of generating complete systems solely via

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

65

transformations. For example, MDSD only generates infrastructure codes. The program synthesis technique
involved in the proposed approach combines transformational and component-based synthesis techniques to
automatically generate business/logic codes. This can facilitate evolutionary model-driven prototyping and greatly
accelerate the development process.

The rest of this paper is organized as follows: Section 2 introduces a component-based program synthesis
method. Section 3 illustrates how model-driven based development approach is used to elicit the requirements.
Section 4 concludes the paper.

2 COMPONENT-BASED PROGRAM SYNTHESIS

To support Component-Based Software Development (CBSD), it is necessary to reduce the learning curve and
automate the composition process. A method along this direction is pattern-based code synthesis in which code
patterns [10][11] are used to capture the typical usages of the components as well as their interactions. Six
composition operators, including one instantiation operator (Map), three functional operators (Concatenate, Invert,
and Splice), and two non-functional operators (distribution and exception handling), have been formally defined for
glue code synthesis.

Based on the original Code Pattern Integration System (CPIS) [11] that enables users to compose code patterns
and achieve semi-automated synthesis of the glue code, an approach has been proposed [12][13] to automate the
code pattern composition process.

 Pattern
 Repository

Synthesized
Code/

Composite
pattern

Planning
parameters

Plans

Adapter

Planning
Domain

Generator

AI
Planner

CPIS

Composer
Pattern
parser

Preprocessed
patterns

Composition
Rules

Code
Generator

Fig. 1 Architecture of code pattern based automated code synthesis system

As shown in Fig. 1, the Code generator consists of two components, namely, Code Pattern Integration System
(CPIS) and Planning System. The planning system is the core in which the AI planner is able to generate
parameterized procedure-like generic reusable plans called procedural plans. The planning domain generator maps
code patterns from the pattern repository into operators of the planning domain. The procedural plans are then
translated into preprocessed patterns that are fed to the composer to synthesize composite code patterns.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

66

3 REQUIREMENTS ELICITATION via PROTOTYPING

Fig. 2 illustrates the development cycle of the proposed approach. In model-driven development, stakeholders
and developers are actively involved in the whole development process. Use cases are the first tangible things that
stakeholders interact with and work closely with developers to achieve agreement. The requirements specification
process can be automated using tools [7][8] that capture essential and relevant software requirements from natural
language descriptions. These tools employ natural language processing (NLP) techniques and can produce UML
elements. This can help automate Object-Oriented Analysis (OOA) though the tools are not mature and only aid the
requirements acquisition and analysis process. Human involvement is mandatory especially when contradictions
exist in the requirement specification, e.g., the client might initially propose detecting all carry-on liquids on
commercial flights, but may subsequently suggest treating it differently based on the volume as the elicitation
process proceeds [15].

analyze
design

refine

refine

UML
Diagrams

PIM

Generated Code

Code
Generator

PSMs

Code Patterns

Code Pattern
Repository

Planning Domain
Generator Automatic OO

NLP System
Stakeholder

Requirement
Engineer

Design
Engineer

Developer

NL requirements
description

Prototype

Manual
Developed Code

Fig. 2 Model-Driven Prototyping

3.1 Context Specification

We apply the context assessment during the requirements acquisition phase. This includes the precise
specifications of functional and non-functional requirements, of platform constraints, and of operational
environment and threats.

Functional requirements specify processes that the system has to perform or information it needs to contain [14].
For the air traveling case study [15], the functional requirements specify that automated screening devices should be
able to detect oxidizers and, in the long run, the system should be able to predict possible means of attacks and come
up with solutions to prevent them from happening, etc. However, it is not clear at this point whether the case study is
targeting a software system, a hardware system, or just coming up with some manual regulations. If this is for a
software system, the proposed method is well suited to capture the requirements because prototypes are especially
useful when there is a great deal of uncertainty or when early feedback from stakeholders is needed [2].

Non-functional requirements address behavioral properties that the system must have [14]. For example, some
false alarms of the screening devices are tolerable. However, excessive false alarms imply poor QoS of these
devices. Maintainability is a major concern for the air traveling example as the screening rules may change. The
system should be designed to be easily upgradeable to deal with these changes. Moreover, cost issue is also an
important aspect. Just as the air traveling example shows, “an economic threat is also a threat”. In practice, it is
important to demonstrate adequate ROI (Return on Investment) for the money that has been spent to build, deploy,
and operate the system.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

67

Specification of platform constraints introduces additional non-functional constraints on the system. With regard
to the air traveling case study [15], it is not clear that the goal of the Blog discussion is for a software system,
hardware system, or manual operations. Hence, the specification of platform capabilities (actuators and sensors) and
constraints (memory, power, weight, size constraints, etc.) cannot be obtained.

Specification of the operational environment and potential threats capture both the impact of the environment on
the system as well as the impact of the system on the environment. For the air traveling example, it includes:

Operators: the individuals who are responsible for deploying and maintaining the daily operation of the system.
They may also decide when to conduct “surprise tests” to keep the screeners alert and whether to send some
screeners for training if they fail the tests.
Users: the persons who use the system, e.g., screeners.
Adverse physical impacts of the environment on the system. This is typically due to environmental events that
affect the physical platform. For example, the damage of a screening device can affect the availability of the
system. Typically, redundancy is the key solution to such requirements.

In general, the specification of the operational environment and threats results in a detailed specification of the non-
functional requirements, e.g., availability, safety, security, usability, etc.

3.2 Iterative Process

The proposed model-driven development process is different from MDA in the sense that there are no
transformations from PIMs to PSMs (Platform Specific Models). This shares some similarities with the MDSD
approach [6], in which no PSMs are necessary also. Practical project experience has proved that this simplification is
usually more useful than the additional degree of freedom gained with PSMs. As a result, there is no need to control,
manipulate, and enrich the various intermediate transformation results with specific information. This not only
allows for more efficient development, but also avoids potential consistency problems: a manual change of an
intermediate model might result in an inconsistency with higher abstraction levels that is not automatically
correctable [6].

In model-driven development, the focus shifts to PIMs, which are higher level abstractions than programs. When
requirements change, it is often easier to indicate what part of the PIM is affected by the changed requirements than
to identify which part of the code must be adapted. The PIMs are easily understood by developers and, hence, code
quality can be improved as the development cycle iterates.

The difference between the proposed approach and MDSD is that besides transformation, it uses the component-
based method to synthesize business/logic codes by automating the code pattern operations. Code pattern is a higher
level abstraction of platform specific components and is used to capture the typical usages of these components as
well as their interactions. The program generator is based on an enhanced AI planner which is able to generate
parameterized procedure-like generic reusable plans (procedural plans).

The component-based program synthesis method can be seamlessly integrated into the proposed model-driven
approach. In the PIM part, OCL is used to express constraints and, hence, make the components complete,
consistent, and unambiguous. Among the constraints, the pre-condition of a method is used to specify the conditions
where the method can be applied, while the post-condition of a method indicates the expected outcomes. As
discussed in Section 2, code patterns have a sound formal basis using OCL and can be converted into planning
operators so that an AI planner can work on the code patterns and derive a procedural plan. This fits naturally in the
definition of the planning problem, P = (O, s0, g), where O is a collection of operators, s0 is the initial state, and g is
the goal state. Under the context of the proposed MDD approach, O is the set of planning operators that are
converted from the code pattern repository; s0 and g are presented by constraints specified in PIMs. The AI planner
in the program generator takes the planning problem as input and generates a procedural plan which is then
transformed into low-level code. Developers have the flexibility to specify constraints at the method level or embed
constraints at lower levels, e.g., method bodies. They then just focus on incomplete parts where the planner cannot
find a suitable solution. This can alleviate the developers’ burden and increase the development speed and the
reliability of the system.

After the system is complete, stakeholders can visually operate it and formulate new requirements to cope with
any problems. These will be fed back to requirement engineers and the development cycle is repeated.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

68

4 CONCLUSIONS

We have proposed a model-driven prototyping approach for requirements engineering. It inherits the advantages
of prototyping elicitations without the disadvantages, such as untraceable requirements and patchwork programs [3],
by applying model-driven development principles and advanced program synthesis techniques. The proposed
approach is an evolutionary process that iteratively refines the requirements, design, and implementation and yields
high quality systems with the help of the proposed component-based program synthesis technique.

REFERENCE

[1] Nuseibeh B, and Easterbrook S: “Requirements Engineering: A Roadmap”, The Future of Software Engineering, Special
Issue 22nd International Conference on Software Engineering, ACM-IEEE, 2000, pp: 35 – 46.

[2] A. Davis: “Operational Prototyping: A New Development Approach”, Software, September/October 1992, Vol. 9, No. 5, pp:
70 – 78.

[3] Wikipedia: “Software Prototyping”, http://en.wikipedia.org/.
[4] J. Warmer, A. Kleppe: “The object constraint language: getting your models ready for MDA”, Addison-Wesley, 2003.
[5] A. Kleppe, J. Warmer, and W. Bast: “MDA explained: the model driven architecture: practice and promise”, Addison-Wesley,

2003.
[6] T. Stahl, M. Vo ̈lter, J. Bettin, A. Haase and S. Helsen: “Model-driven software development: technology, engineering,

management”, John Wiley, 2006.
[7] H. M. Harmain and R. Gaizauskas: “CM-Builder: A Natural language-based CASE Tool”, Journal of Automated Software

Engineering, 10, 2003, pp: 157 – 181.
[8] S.L.V. Overmyer and O. Rambow: “Conceptual Modeling through Linguistics Analysis Using LIDA”, 23rd international

conference on Software engineering, July 2001.
[9] Object Management Group: “MDA Guide: Version 1.0.1”, OMG document omg/03-06-01, 2005.
[10] J. Liu, F. B. Bastani, and I. Yen: “Code Pattern: An Approach for Component-Based Code Synthesis”, Proceeding of the 7th

World Multiconference on Systemics, Cybernetics and Informatics, Orlando, FL, July 2003, pp: 330 – 336.
[11] J. Liu, F. B. Bastani, and I. Yen: “A Formal Foundation of the Operations on Code Patterns”, The International Conference

on Software Engineering and Knowledge Engineering, Taipei, Taiwan, Republic of China, July 2005.
[12] J. Fu, F.B. Bastani, and I. Yen: “Automated AI Planning and Code Pattern Based Code Synthesis”, ICTAI 2006, pp: 540 –

546.
[13] J. Fu, F.B. Bastani, and I. Yen: “Iterative Planning in the Context of Automated Code Synthesis”, COMPSAC 2007, pp: 251

– 259.
[14] A. Dennis, B. H. Wixom, D. and Tegarden, Systems Analysis and Design with UML Version 2.0: An Object-Oriented

Approach, Wiley, 2 edition (August 10, 2004)
[15] http://fabrice.kordon.free.fr/Monterey2007/invitation_files/case-1.pdf

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

69

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

70

Improving the Quality of Requirements Specifications via

Automatically Created Object-Oriented Models

Daniel Popescu1 Spencer Rugaber2 Nenad Medvidovic1 Daniel M. Berry3

Abstract. In industry, reviews and inspections are the primary methods to
identify ambiguities, inconsistencies, and under specifications in natural lan-
guage (NL) software requirements specifications (SRSs). However, humans
have difficulties identifying ambiguities and tend to overlook inconsistencies
in a large NL SRS. This paper presents a three-step, semi-automatic method,
supported by a prototype tool, for identifying inconsistencies and ambiguities
in NL SRSs. The method combines the strengths of automation and human
reasoning to overcome difficulties with reviews and inspections. First, the
tool parses a NL SRS according to a constraining grammar. Second, from re-
lationships exposed in the parse, the tool creates the classes, methods, varia-
bles, and associations of an object-oriented analysis model of the specified
system. Third, the model is diagrammed so that a human reviewer can use the
model to detect ambiguities and inconsistencies. Since a human finds the
problems, the tool has to have neither perfect recall nor perfect precision. The
effectiveness of the approach is demonstrated by applying it and the tool to a
widely published example NL SRS. A separate study evaluates the tool's do-
main-specific term detection.

1 Introduction

The typical industrial software specifier writes software requirements specifications
(SRSs) in a natural language (NL). Even if a final SRS is written in a formal language,
its first draft is usually written in a NL. A NL SRS enhances the communication be-
tween all the stakeholders. However, on the downside, often a NL SRS is imprecise and
ambiguous [6].

Many an organization follows a three-step review process to assess the quality of a
NL SRS and to identify ambiguities and other defects in the NL SRS [1]. First, assigned
reviewers try to find defects in the document. Second, in a meeting of the reviewers, all
found defects are collected and rated according to their severities. Third, the reviewed
NL SRS and the collected defects are sent back to the authors for corrections.

In this process, the quality of a review of a document is dependent mainly upon how
effectively each human reviewer is able to find ambiguities and other defects in the doc-
ument. However, a human reviewer and even a group of them have difficulties identi-
fying all ambiguities, even when using aids such as checklists. A human reviewer might
overlook some defects while reading a SRS, because he might assume that the first in-

1Comp. Sci. Department
Univ. of Southern California

Los Angeles, CA, USA

2College of Computing
Georgia Institute of Tech.

Atlanta, GA, USA

3Cheriton School of Comp. Sci.
Univ. of Waterloo

Waterloo, ON, Canada

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

71

terpretation of the document that came to his mind is the intended interpretation, una-
ware of other possible understandings. In other words, he unconsciously disambiguates
an ambiguous document [11].

When a NL SRS is large, some ambiguities might remain undetected, because am-
biguities caused by interaction of distant parts of the NL SRS are difficult to detect. In
any one review sessions, only an excerpt of the NL SRS can be reviewed. Any ambigu-
ity in the reviewed excerpt that is caused by interaction with a part of the NL SRS out-
side the excerpt may not be detectable. Moreover, when a NL SRS is large, lack of time
may prevent some parts of the NL SRS from ever being reviewed. Having a faster meth-
od for conducting reviews would permit larger chunks of the whole NL SRS to be re-
viewed at once. It would permit also faster reviews so that more reviews and, thus,
greater coverage of the NL SRS would be possible in any duration.

A controlled, grammar-constrained NL [9][10] helps to reduce ambiguities by con-
straining what can be said in the NL. One possible grammar rule eliminates passive
voice and, therefore, ensures that the doer of an action is always known. However, a
controlled NL can address only syntactic ambiguity. Semantic ambiguity is beyond its
control.

Because a semantic model omits unnecessary details, it helps to reduce complexity,
and it helps the user to visualize important aspects. Therefore, with the help of a seman-
tic model, a human reviewer can validate larger system descriptions than otherwise.
Moreover, the human reviewer can focus on conceptual correctness and does not need
to worry about the consistent use of concepts and correct grammar usage. Therefore, if
a semantic model can be created of the system specified by a NL SRS, a thorough re-
view of the NL SRS becomes easier.

Of course, constructing a model bears the risks of introducing new defects and of
the model's not representing the original NL SRS. Researchers have tried to mitigate
these risks by using automatic approaches and NL processing (NLP) [28][24][12] tech-
niques. A software tool can scan, search, browse, and tag huge text documents much
faster than a human analyst can. Furthermore, a tool works rigorously, decreasing the
risk of overlooked defects and unconscious disambiguation. Each of some of the ap-
proaches tries to build a model from a NL source and may even try to reason about the
content, possibly with assistance from the human user.

In any automatic approach, the recall and precision of its NL parsing and of its do-
main-specific term (DST) identification bound the quality of the approach. The typical
domain has its own terms, abbreviations, and vocabulary. Therefore, a tool must detect
these to create a correct model. Each of some approaches has difficulty to create a cor-
rect model because it relies on a semantic network that is based on a predefined domain
dictionary. For many domains a domain dictionary does not exist. Each of other ap-
proaches requires the human specifiers to build a domain dictionary while writing the
NL SRS. Clearly, not every requirements engineering (RE) process is so mature that in
it, a domain dictionary is built. Even in a mature process, some domain terms might be
forgotten, because the analysts assume that these terms are widely understood and rec-
ognized.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

72

We have created an approach for helping a specification writer or reviewer identify
ambiguities in a NL SRS, in which the approach tries to address all of the above men-
tioned problems. Hereinafter, the new approach is called “our approach” to distinguish
it from other approaches. For our approach, we have built a prototype dowsing1 tool,
called “Dowser”. Dowser is based on one controlled NL. It can create from any NL SRS
an object-oriented (OO) diagram, which can then be assessed by human reviewers.

In the first step, Dowser parses a NL SRS and extracts the classes, methods, and as-
sociations of a textual class model from the NL SRS. In the second step, Dowser dia-
grams the constructed textual class model. In the third step, a human reviewer can check
the generated diagram for signs of defects in the NL SRS. Dowser and our approach are
based on NL processing (NLP) and not on NL understanding. Dowser cannot judge
whether or not the produced model describes a good set of requirements or classes. This
judgement requires understanding. Therefore, in our approach, a human is the final ar-
biter of ambiguity. Because the human is in the loop, Dowser has to have neither perfect
recall nor perfect precision.

To evaluate the effectiveness of our approach, we have implemented a prototype of
Dowser and have tested it on a widely used example SRS, describing an elevator system
[15]. The case study demonstrates the effectiveness of the approach. Since identifying
domain terminology is required for any successful NLP-based approach, we conducted
separate studies to evaluate Dowser's DST detection. The studies show that our ap-
proach is capable of achieving high recall and precision when detecting DSTs in a
UNIX manual page.

Section 2 discusses related work. Section 3 describes out approach and all of its
components. Section 4 describes validating case studies, and Section 5 concludes the
paper by discussing the results and future work.

2 Related Work

Related work can be divided into four parts: (1) NLP on SRSs, (2) controlled languages,
(3) automatic object-oriented (OO) analysis model (OOAM) extraction, and (4) do-
main-specific term (DST) extraction.

NLP on SRSs. Kof describes a case study of the application of NLP to extract and
classify terms and then to build a domain ontology [18]. This work is the most similar
to our approach. The built domain ontology consists of nouns and verbs, which consti-
tute the domain’s concepts. In the end, the domain ontology helps to detect weaknesses
in the requirements specification. Gervasi and Nuseibeh describe their experiences us-
ing lightweight formal methods for the partial validation of NL SRSs [12]. They check
properties of models obtained by shallow parsing of natural language requirements.
Furthermore, they demonstrate scalability of their approach with a NASA SRS.

Controlled languages. Fuchs and Schwitter developed Attempto Controlled English
(ACE) [9], a sublanguage of English whose utterances can be unambiguously translated

1. A dowser is a tool that makes use of domain knowledge in understanding software ar-
tifacts [7].

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

73

into first-order logic. Over the years, ACE has evolved into a mature controlled lan-
guage, which is used mainly for reasoning about SRSs [10]. Juristo et al. developed oth-
er controlled languages, SUL and DUL [17]. For these languages, they defined a corre-
spondence between linguistic patterns and conceptual patterns. After a SRS has been
written in SUL and DUL, an OOAM can be created using the correspondence.

OOAM Extraction. Several tools exist that automatically transform a SRS into an
OOAM. Mich’s NL-OOPS [23] tool first transforms a parsed SRS into a semantic net-
work. Afterwards, the tool derives an OOAM from the semantic network. Delisle, Bark-
er, and Biskri implemented a tool that uses only syntactic extraction rules [4]. Harmain
and Gaizauskas implemented another syntax-based tool, and they introduce a method
to evaluate the performance of any such tool [15]. As in our approach, Nanduri and Ru-
gaber [27] have used the same parser and had the same initial idea of using syntactic
knowledge to transform a NL SRS into an OOAM. The objective of their approach was
to validate a manually constructed OOAM. Our approach’s main objective is to identify
ambiguity, inconsistency, and underspecification in a NL SRS. The more restricted ob-
jectives of our approach enables a more detailed discussion of the problem space and
contributes (1) a constraining grammar, (2) analysis interpretation guidelines, (3) addi-
tional transformation rules, and (4) DST extraction.

DST extraction. Mollá et al. developed a method for answering questions in any
specified technical domain. This work recognizes the importance of dealing with spec-
ified technical terminologies in NLP tools that are applied to SRSs [26].

3 Our Approach

The goal of our approach is to reduce the number of ambiguities, inconsistencies, and
underspecifications in a NL SRS through automation. Assuming that automation will
not be perfect, we let a human make the final decision about a potential ambiguity, in-
consistency, or underspecification.

While reading through a NL SRS, an engineer usually builds a mental model of the
described system and reasons about the correct relations of the SRS’s concepts. If an
engineer could only analyze the correctness of a model, instead of having also to create
it, write it down, and then analyze it, he could use his skills and time more effectively.

Considering that a reviewer could more effectively inspect a model than the com-
plete NL SRS, we developed an automatic approach based on the following observa-
tions:

• Each of most software companies uses a NL SRS [22] to describe a software
system regardless of its domain.

• An OOAM is able to show the most important concepts and relations among
the concepts of a system to build.

• Many an OO design method suggests building an OOAM of a sentence by iden-
tifying the parts of the sentence and creating a class from the subject, attributes
from the adjectives, and methods and associations from the verb [2][29].

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

74

Consider the example transformation of the sentence1 The audio player shall play
the music list. into an OOAM; audio player is the subject of the sentence, play is the
verb, and music list is the direct object. This sentence could therefore be modeled:

In this example, the adjectives audio and music are not broken out, because each
is part of a DST.

Using this syntax-based method, the typical functional requirement sentence of a
NL SRS can be transformed into an OOAM. Since this heuristic suggests using mostly
syntactic information, the transformation can be automated. A NL parser can create
parse trees of any NL text [30]. The OO design literature gives many rules and heuris-
tics to transform many a syntactic construct into a textual OOAM. Off-the-shelf soft-
ware exists to diagram textual OOAMs [31].

Since NL SRSs are written for a wide range of domains such as medical, technical
or judicial domains, a successful approach must be robust in identifying DSTs. Our ap-
proach addresses this need by using syntactic information and a robust parser with
guessing capability.

The overall quality of any NL SRS can be improved by enforcing the use of a con-
straining grammar. A constraining grammar reduces the possibilities of ambiguities by
constraining the allowed language constructs. At the same time, it increases the quality
of parsing, reduces the number of parses, and results in more precise OOAMs.

1. A sans serif typeface is used for example text, except in a parse tree. Beware of punc-
tuation, also typeset in the sans serif typeface, at the end of any example. It should not be
considered as punctuation in the containing sentence, which is typeset in a serifed type-
face. A typewriter typeface is used for example text in any parse tree, in which monospac-
ing is essential for the correct display of the tree.

Figure 1. Flow of the Approach

Requirements

Engineering

Constraining

Grammar

Graphical

OOAM

Manual

Review

Domain-Specific Transformation

Rules

Textual

OOAM

Graphical

RenderingTerm Detection
NL Parsing

NL SRS
Manual

Automatic

audio player music list
play

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

75

Therefore, by using and extending existing technology, we can create a tool that au-
tomatically transforms a NL SRS into an OOAM that helps a human being to identify
ambiguities, inconsistencies, and under specifications in the NL SRS.

Figure 1 shows the flow of our approach. First, Dowser parses a NL SRS according
to a constraining grammar. Second, from relationships exposed in the parse, Dowser
creates the classes, methods, variables, and associations of an OOAM of the specified
system. Third, the OOAM is diagrammed so that a human reviewer can use the model
to detect ambiguities, inconsistencies, and underspecifications.

3.1 Constraining Grammar
Any NL allows expressing the same concept in different ways using different syntactic
structures. For example, a sentence in active voice can be translated into passive voice
without changing the semantics or pragmatics. However, passive voice can encourage
ambiguities. For example, the sentence The illumination of the button is activated.
leaves room for different interpretations, because it is not clear who holds the responsi-
bility for activating the illumination. Alternatively, the sentence could be describing a
state. As a consequence, a constraining grammar can be introduced to decrease the pos-
sibility of ambiguity. A constraining grammar enables formal reasoning without the dis-
advantages of a fully formal language [10]. A constraining grammar has the other ad-
vantage that it is more amenable to parsing, and extraction rules based on it can be cre-
ated more easily.

Our approach uses a constraining grammar that is derived from Juristo et al.’s
grammar [17]. They have developed two context-free grammars and an unambiguous
mapping from these grammars to OOAMs. This mapping is explicitly defined and al-
lows better model creation than with commonly used heuristics that are justified only
intuitively. Moreover, the explicit definition enables automation.

Using a constraining grammar influences the style of a NL SRS, because a con-
straint grammar enforces simple sentences. The typical sentence has a basic structure
consisting of subject, verb and object. Furthermore, only simple subclause construc-
tions are allowed, such as conditional clauses, using if, when, velc1. Therefore, a NL
SRS will contain many short sentences if it is written according to the developed con-
trolled grammar. Shorter, simpler sentences tend to be less ambiguous, because at the
very least, they avoid some coordination and scope ambiguities

3.2 Natural Language Parsing
Since an OOAM is created automatically from syntactic information, we needed a pars-
er to extract this information from the NL SRS. The parser we used was developed by
Sleator and Temperley (S&T) at Carnegie-Mellon University [30]. Sutcliffe and McEl-
ligott showed that the S&T parser is robust and accurate for parsing software manuals
[33]. Since software manuals are similar to SRSs [5], the S&T parser looked promising
for our approach. Additionally, the S&T parser was chosen because it is able to guess

1. “velc.” means “or others” and is to “vel cetera” as “etc.” is to “et cetera”.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

76

the grammatical role of unknown words. This capability is used for the DST detection,
which is described in Section 3.4

 The parser is based on the theory of link grammars, which define easy-to-under-
stand rule-based grammar systems. A link grammar consists of a set of words, i.e., the
terminal symbols of the grammar, each of which has one or more linking requirements.
A sequence of words is a sentence of the language defined by the grammar if there ex-
ists a way to assign to the words links that satisfy the following three conditions:

1. Planarity: the links do not cross;

2. Connectivity: the links suffice to connect all the words of the sequence together;
and

3. Satisfaction: the links satisfy the linking requirements of each word in the se-
quence.

The link grammar parser produces the links for every such sentence. After parsing, the
links can be accessed through the API of the link grammar parser.

Each established link in a sentence has a link type, which defines the grammatical
usage of the word at the source of the link. The sentence The elevator illuminates the
button. shows three different link types:

 +-------Os------+
 +---Ds--+-----Ss----+ +--Ds--+
 | | | | |
 the elevator.n illuminates.v the button.n .

A D link connects a determiner to a noun, an S link connects a subject noun to its finite
verb, and an O link connects a transitive verb to its object. A small s after the type of a
link indicates that the target of the link is a singular noun.

From this example sentence, the first extraction rule can be derived. If a sentence
contains an S link and an O link, then create a class from the subject noun and one from
the object noun. Afterwards, create a directed association from the subject class to the
object class, which is named by the verb:

A directed association was chosen over a simple class method, because a directed
association shows also who invokes the action. If the action were modeled as a class
method, the information about who causes the action would have been lost. Using this
rule, Dowser would extract the classes elevator and button and a directed association
illuminate from the elevator class to the button class.

To avoid having two different classes created for elevator and elevators, our ap-
proach incorporates the lexical reference system WordNet [25] to find the stems of
nouns and verbs. Therefore, the name of each created class is the stem of a noun.

One might think that the use of a constrained language would reduce the number of
parses and might even ensure that there is only one per sentence. However, the language

illuminate
elevator button

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

77

constraints only encourage and do not guarantee uniguity1. In general, the link parser
returns multiple parses for any input sentence. For example, When an elevator has
not to service any requests, the elevator remains at its final destination and the
doors of the elevator are closed. returns 16 parses. However, as the link grammar
homepage [34] says, “If there is more than one satisfactory linkage, the parser orders
them according to certain simple heuristics.” In our experience, these heuristics selected
as first our preferred parse. Of courser, these simple heuristics cannot be expected to
always select the parse that the writer intended, because syntactic ambiguity is a hard
problem. Even humans have to rely on semantic understanding and context to resolve
difficult cases of syntactic ambiguity, e.g., the classic The boy saw the man with the
telescope..

Therefore, Dowser was consciously designed to help the user see semantic ambigu-
ities and ignores dealing with syntactic ambiguities even though it sees multiple parse
trees, because

1. there are several tools that deal with syntactic ambiguities (e.g. [35][19][3]) but

2. there are very few, if any, that deal with or even just help deal with true semantic
ambiguities.

3.3 Transformation Rules
Transformation rules bridge the gap between the extracted syntactic sentence informa-
tion and the targeted OOAM. Each transformation rule describes how a combination of
words of identified grammatical roles can be transformed into classes, associations, at-
tributes, and methods.

 The transformation rules Dowser uses were derived from Juristo et al.’s grammar
[17], the OO methods literature [27][29], and conducted experiments. In total, Dowser
uses 13 transformation rules. The five most frequently used are the following:

1. The most frequent applicable rule is the above described rule. If a parsed sentence
contains a subject and an object link, then create two classes with a directed asso-
ciation named after the verb.

2. Aggregations are an important notion in UML class diagrams. One rule for ex-
tracting aggregations is similar to the first rule. The major difference is the verb.
This rule is applicable only if the parsed sentence contains a subject and an object
link and the verb stem is one of have, possess, contain, or include. In that case,
the object is aggregated to the subject.

3. Sometimes, a subclause describes a system action without the need of an object,
particularly, if the system reacts to a given event, e.g., If the user presses the
button, the elevator moves.. An event clause starts with an if or when. If Dows-
er detects an event clause, and the main clause has only a subject link, then a class
from the subject link noun is created and the verb is added to the new class as a
method.

4. A genitive attribute indicates two classes with an aggregation, e.g., The system
stores the name of the customer. or The system stores the customer's

1. “Uniguity” means “lack of ambiguity’.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

78

name.. If Dowser detects a genitive, it creates two classes with one linking ag-
gregation. For either example, Dowser would create a class customer, and it
would aggregate the class name to the class customer; name could have been
modeled as an attribute. However, other sentences in the specification would add
methods to the class name later. Therefore, with the syntactic information of only
one sentence, it cannot be decided if name is an attribute or an aggregated class.
This rule needs to be constrained by semantic information. For example, Dowser
should not apply this rule to the sentence The user enters the amount of mon-
ey.. Although amount is a noun, the class amount is not desired in this case.

5. Although active clauses are preferred in NL SRSs, passive clauses are still need-
ed. They are used to describe relations and states, e.g. as in A husband is mar-
ried to his wife.. From this sentence, two classes are created, from the subject
noun and the noun of the prepositional phrase. The passive verb and the connect-
ing word to link the prepositional phrase described with the association.

Dowser applies two post-processing rules after it executes all possible transformation
rules.

The first post-processing rule converts all classes that are aggregated to another
class into attributes of that other class. Only a class that lacks any attribute, method, or
incoming or outgoing association is transformed. For example, one rule described
above extracts two classes and one aggregation from the sentence The system stores
the name of the customer.. The rule creates a class name and a class customer.
However, the class name has probably no method or association. Therefore, if a class
contains no method after all rules have been applied, it is transformed into an attribute
of the class customer.

The second post-processing rule removes the class system from the OOAM, since
all other classes together form the system; system is not a class, because it cannot be
a subpart of itself.

The full set of rules, a user’s manual for Dowser, and other details may be found at
the Web site, http://www.cc.gatech.edu/projects/dowser/ .

3.4 Domain-Specific Terms
In order to build the correct classes into the OOAM of a NL SRS, our approach has to
be able to detect DSTs. If Dowser were to extract only the concept button from eleva-
tor button, Dowser would be identifying an incorrect term.

To achieve high DST recall, the parser could access a special domain data diction-
ary. However, for each of most domains, such a data dictionary does not exist. Software
is built for financial, medical, technical, and other domains. Creating a domain diction-
ary for each of these rich domains is complex and difficult. Additionally, the customer
of a software application might prefer to use her own terms for describing her product.
A product could have arbitrarily chosen names, such as DNAComp07. Therefore, even
if a domain dictionary exists for a NL SRS, DST detection remains a challenge.

The link types of the link grammar parse can be used to identify DSTs. The typical
DST happens to be built from an attributive noun or a proper noun. Therefore, in a link

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

79

grammar parse, the AN link, denoting an attributive noun, and the G link, denoting a
proper noun, help to identify DSTs.

Consider the link grammar parse of the sentence The RS7 business plan is due
in May.:

 +---------Ds---------+
 | +-------AN-------+
 | | +---AN---+--Ss-+-Pa-+-MVp+-IN+
 | | | | | | | |
 The RS7 business.n plan.n is.v due.a in May

Thus, RS7 business plan is a domain-specific term.

A parser typically has problems parsing words that are not in its internal dictionary.
However, the S&T link grammar parser has a guessing mode, in which it can guess the
syntactic role of an unknown term. Therefore, it is often able to guess the syntactic role
of an unknown term, improving its DST recall.

Since DST detection is essential for transforming a NL SRS into an OOAM, we
conducted a study, described in Section 4.2, about the recall and precision of our ap-
proach.

3.5 Diagramming OOAMs
The previous steps are able to create a textual OOAM. However, it is easier for a human
to understand a graphical OOAM than a textual OOAM. Using the approach described
by Spinellis [31], an extracted textual OOAM is diagrammed. The tool UMLGraph [32]
transforms a textual description into a dot file, which the tool Graphviz [13] can trans-
form into any of some popular graphic formats, such as JPEG, GIF, or PNG.

3.6 Interpretation of OOAM
In the last step of our approach, a human analyst checks the created diagram for ambi-
guities.

 Some ideas that a human analyst can use to find defects in an OOAM are:

• An association is a hint for possible ambiguities. For example, suppose that
each of two different classes sends a message to the same target class. The ana-
lyst should check that the two different classes actually are to communicate
with the same target class. If a motion sensor activates one type of display, and
a smoke detector activates another type of display, then the class diagram
should reflect this situation with two different display classes.

• Each class should reflect one and only one concept. For example, the analyst
should check that book and textbook are really two different classes when
Dowser does not create a generalization of these two classes.

• If a class has an attribute, but the attribute is not of a primitive type, such as
string or number, then the definition of the attribute might be missing in the
original text. After a definition is added, the attribute should be represented by
its own class.

• If a class has no association, then the class might be underspecified, as there are
no relations or interactions between the class and other classes.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

80

3.7 Limitations of Method
Observe that the OOAM is a model of only static relationships among the concepts
mentioned in the parsed NL SRS. We have not attempted to apply our approach to mod-
eling behavior.

4 Studies

This section describes the case studies in which we evaluated the effectiveness of our
approach in helping an analyst to identify ambiguities, inconsistencies, and underspeci-
fications in a NL SRS and in which we evaluated Dowser’s effectiveness at DST iden-
tification.

4.1 Elevator Case Study
To evaluate the effectiveness of our approach, we implemented Dowser and applied it
to an example NL SRS that we call “the ESD”. The ESD describes the control software
for an elevator system [16]. The ESD was chosen, because it could be the NL SRS of a
real industrial system. At the same time, the ESD is short enough to completely de-
scribed in this paper. Moreover, the ESD happens to contain enough defects that it il-
lustrates the defect types that can be revealed with the help of Dowser.

The original ESD was:

An n elevator system is to be installed in a building with m floors. The ele-
vators and the control mechanism are supplied by a manufacturer The internal
mechanisms of these are assumed (given) in this problem.

Design the logic to move elevators between floors in the building according
to the following rules:

1. Each elevator has a set of buttons, one button for each floor. These illu-
minate when pressed and cause the elevator to visit the corresponding
floor. The illumination is cancelled when the corresponding floor is visited
(i.e., stopped at) by the elevator.

2. Each floor has two buttons (except ground and top), one to request an up-
elevator and one to request a down-elevator. These buttons illuminate
when pressed. The buttons are cancelled when an elevator visits the floor
and is either travelling the desired direction, or visiting a floor with no re-
quests outstanding. In the latter case, if both floor request buttons are illu-
minated, only one should be cancelled. The algorithm used to decide
which to serve first should minimize the waiting time for both requests.

3. When an elevator has no requests to service, it should remain at its final
destination with its doors closed and await further requests (or model a
“holding” floor).

4. All requests for elevators from floors must be serviced eventually, with all
floors given equal priority.

5. All requests for floors within elevators must be serviced eventually, with
floors being serviced sequentially in the direction of travel.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

81

First, we applied Dowser tool to the original unmodified ESD, which was not writ-
ten according to any constraining grammar. Since the transformation rules have been
created assuming that the analyzed text conforms to a constraining grammar, applying
Dowser to the original ESD resulted in a diagram with only five classes such as these
and set. None of these classes describes any domain concepts of the ESD.

To successfully apply Dowser to the ESD, the ESD had to be rewritten sentence-
by-sentence to conform to the constraining grammar. No information was added or re-
moved from the original ESD during the rewriting. Therefore, the rewriting did not in-
troduce any new defects, which would have adulterated the results of the case study.

The rewritten ESD is:

An n elevator system is to be installed in a building with m floors.
1. Each elevator has buttons. Each elevator has one button for each floor.

When a user presses a button, the elevator illuminates the button and the
elevator visits the corresponding floor. When the elevator visits a floor, the
elevator cancels the corresponding illumination.

2. Each floor has two buttons. (except ground and top). If the user presses
the up-button, an up-elevator is requested. If the user presses the down-
button, a down-elevator is requested. If the user presses a button, this but-
ton becomes illuminated. When an elevator visits a floor, the elevator can-
cels the corresponding illumination of the button in the desired direction.
The system minimizes the waiting time.

3. When an elevator has not to service any requests, the elevator remains at
its final destination and the doors of the elevator are closed. The elevator
then awaits further requests.

4. The elevators service all requests from floors with equal priority eventual-
ly.

5. If a user presses a button within the elevator, the elevator services this re-
quest eventually in the direction of travel.

Applying Dowser to the new ESD resulted in the diagram of Figure 2. Dowser created
an OOAM containing 14 partially connected classes with attributes and methods.

The graphically rendered OOAM does not reveal defects on its own. By applying
the guidelines described in Section 3.6, we identified four conceptual defects in the
OOAM, which could be traced back to the original ESD.

1. The diagram shows classes up-elevator and down-elevator. Neither class has
any connection to any other class, and neither has any association to the class el-
evator. Furthermore, the up-elevator has an attribute requested, while eleva-
tor serves a request indicates that each of up-elevator and down-elevator is
a specialization of elevator. All of this information indicates that neither concept,
up-elevator nor down-elevator, is defined enough in the original ESD.

2. The class door in the diagram contains the attribute closed. However, the class
has no method to manipulate this state. If closing and opening the door are within
the scope of the system, then it is clear that the concept door is not defined enough
in the original ESD.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

82

3. In the ESD, each of the floor and the elevator has buttons. Therefore, each of the
class elevator and the class floor should have an aggregated class button in the
OOAM. However, the diagram indicates that both have the same type of button.
Since a button in an elevator and a button in a floor have different behaviors, it is
unlikely that the same class describes both types of buttons. Generalizing both
types to a single class button could therefore lead to misinterpretations. Defining
concepts elevator button and floor button would resolve this ambiguity and en-
hance the clarity of the ESD.

4. Each of the classes up-button and down-button is connected to only the class
user in the OOAM. Since a user is an actor in the system, the diagram does not
clarify where button belongs. The location can be derived from the ESD, because
button is mentioned in the paragraph that mentions floor. However, it should not
be necessary to use this fact. Therefore, each concept should be specified in more
detail in the ESD to reduce the ambiguity in the specification.

This case study shows how Dowser can help an analyst identify defects in a NL
SRS. If a constraining grammar is used to write a NL SRS, our approach can help detect
ambiguities, inconsistencies, and underspecifications.

4.2 DST Detection Quality
The case study in Section 4.1 shows the importance of detecting DSTs. For the ESD,
Dowser needed to be able to detect DSTs such as floor button, elevator button, or
down elevator. If Dowser were to extract only the terms button and elevator from the
ESD, it would create wrong classes and associations.

Section 3.4 explains how Dowser relies on syntactic information to identify DSTs.
To measure Dowser’s DST detection capability, we conducted a separate study. To
measure Dowser’s DST detection, the metrics recall and precision were calculated of

building

button

illuminated

illumination

door

closed

down_button

down_elevator

requested

elevator

remain()

floor

visit

cancel

request

await service

elevator_system

installed_in

up_button

up_elevator

requested

user

press press press

waiting_time

minimize()

Figure 2. OOAM of the ESD

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

83

Dowser’s extraction of DSTs from a user’s manual. These metrics are used to evaluate
the success of many NLP tools [14] :

• Recall measures how well a tool identifies desired pieces of information in a
source:

Here is the number of correctly identified desired pieces of information
in the source text and is the total number of desired pieces of information in
the source text.

• Precision measures how accurately a tool identifies desired pieces of information
in a source:

Here is as for Recall and is the number of incorrectly identified
desired pieces of information in the source text.

We chose the intro man page of the Cygwin environment with which to measure
recall and precision of Dowser’s DST detection. A manual page seems to be a suitable
experiment source, because it is a technical document with a large number of DSTs.

The steps of the experiments are as follows.

1. We manually identified every DST, a noun or a compound noun, from the intro
man page. The intro man page contains 52 terms like Cygwin, Linux-like envi-
ronment, Linux API emulation layer, and POSIX/SUSv2. The 52 terms con-
sists of 33 single-noun terms and 19 compound-noun terms.

2. For the first experiment, the link grammar parser extracted every term out of the
intro man page without the capability of extracting compound-noun terms. It rec-
ognized 31 of the single-noun terms and none of the compound-noun terms.
Therefore, it reached a recall value of 59.6% for all terms and of 93.9% for single-
noun terms.

3. For the second experiment, compound-noun term detection was added to the link
grammar parser. After this, the tool recognized 10 compound-noun terms. As the
single-noun terms detection rate stayed the same, the tool recognized 41 terms.
Therefore, it reached a recall value of 78.8%.

Afterwards, the undetected terms were examined. It turned out that five terms were un-
detected because they appeared in grammatically obscure or wrong parts in the sen-
tence. Correcting these sentence, increased the detected terms to 46 and the recall value
to 88.46%.

The five not identified terms were (1) case-insensitive file system; (2) intro man
page; (3) Linux look and feel; (4) Red Hat, Inc.; and (5) User’s Guide. The term
Red Hat, Inc. is not recognized because of the comma, User’s Guide cannot be de-
tected syntactically, because if every genitive were part of a term, it would lead to an
over-generation of terms. Linux look and feel is not recognized because of the con-

Recall
Icorrect

Itotal
-----------------=

Icorrect
Itotal

Precision
Icorrect

Icorrect Iincorrect+
--=

Icorrect Iincorrect

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

84

junction and in the term. Case-insensitive file system and intro man page can be
only partially detected, because case-insensitive is an adjective, which is only some-
times part of a term. Another example demonstrates the difficulties caused by adjec-
tives. In readable manual, only manual is a term in most cases. Using every adjec-
tive as part of the term would lead to an overgeneration of terms. The term intro man
page is not recognized because the link grammar parser guesses that intro is an ad-
jective. However, if it is planned that case-insensitive file system is a concept within
a SRS, then writing it with initial upper-case letters would allow the link grammar pars-
er to detect it as a proper noun, and thus as a DST.

Dowser extracted seven wrong terms, since it created wrong terminology for the in-
completely detected terms, e.g., it extracted the term man page instead of intro man
page. Overall, Dowser reached a precision value of 86.79% on the intro man page.

The DST detection experiment shows that using only syntactic information from
the link grammar parser allows a fairly high DST detection rate.

5 Discussion and Conclusion

Dowser’s effectiveness in helping a human analyst to identify ambiguity, inconsistency,
and underspecification in a NL SRS and its recall and precision in identifying DSTs in
a user’s manual are not bad considering that Dowser was built mostly out of existing
software.

Of course, Dowser’s lack of perfection, particularly in the construction of an
OOAM and in the DST recall, says that Dowser can be used as only one of an array of
approaches and tools for identifying DSTs and for detecting ambiguity, inconsistency,
and underspecification in NL SRSs. However, because of the inherent difficulty of
these tasks for humans, every little bit helps!

One drawback of the approach is that for best results, the input should be written in
the constrained language. If the actual input is not written in the constrained language,
it must be rewritten. This rewriting necessity might be considered a reason not to use
Dowser. However, one could argue that the rewriting is part of the whole process of
eliminating ambiguity, which ultimately the human carries out.

5.1 Future Work
The lack of perfection says that more work is needed:

• How does Dowser perform on larger, industrial-strength NL SRSs? Answering
this question would help to explore the problem space and to find new unsolved
research questions.

• The current Dowser cannot resolve anaphora. An anaphor is a linguistic unit, such
as a pronoun, that refers to a previous unit. In The customer can buy text books
and return them., them is an example of an anaphor, which must be resolved to
text books. While Dowser can identify anaphora, it cannot resolve them. A sim-
ple solution would be to have Dowser flag all anaphora in its input text, so a hu-
man analyst could change each to its resolution.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

85

• DST identification can be improved. As mentioned above, syntactic information
is not sufficient to detect all the DSTs within a document. Therefore, frequency
analysis or baseline text analysis [20] might improve DST identification.

• Additional semantic knowledge could improve the capability of Dowser. For ex-
ample, the WordNet lexicon contains information about hypernyms, which can
indicate superclasses, and meronyms, which can indicate aggregations. This in-
formation could be used to supply missing links in an OOAM. However, although
WordNet is a large online lexicon, it lacks DSTs and therefore might be only a
little help. Extending Dowser’s dictionary with DSTs could reduce this problem.

• The current Dowser is not applicable to a NL SRS that has a functional language
style, i.e., with sentences such as, The system must provide the functionality
of.... Handling such sentences would require a different grammar. Future work
could examine which grammar is the most suitable for class extraction.

• The UML offers a set of different diagram types. NLP could be used to create se-
quence, state, or other diagrams. For example, Juristo et al. [17] developed also a
controlled grammar for specifying dynamic behavior.

• Other work has found different sources of ambiguities in NL SRS. Since there
seems not to be a single perfect approach, different approaches (e.g. [35][8][21])
could be integrated into a single framework for validating NL SRSs. This integra-
tion could lead to a new method of developing NL SRSs. Indeed, this sort of in-
tegration would deal with any syntactic ambiguities found by the parser that is
used.

References

[1] IEEE Standard for software reviews and audits, Soft. Eng. Tech. Comm. of the IEEE Com-
puter Society, 1989, IEEE Std 1028–1988.

[2] R. J. Abbott. Program design by informal English descriptions. Communication of the
ACM, 26(11): 882–894, 1983.

[3] A. Bucchiarone, S. Gnesi, and P. Pierini. Quality Analysis of NL Requirements: An Indus-
trial Case Study, Proceedings of the Thirteenth IEEE International Conference on Require-
ments Engineering (RE'05), pp. 390–394, Paris, France, 29 August–2 September, 2005.

[4] S. Delisle, D. Barker and K. Biskri. Object-oriented analysis: Getting help from robust
computational linguistic tools. Application of Natural Language to Information Systems,
G. Friedl, H.C. Mayr, eds., Oesterreichische Computer Gesellschaft, pp. 167–172, 1999.

[5] D. M. Berry, K. Daudjee, J. Dong, I. Fainchtein, M.A. Nelson, and T. Nelson. User's Man-
ual as a Requirements Specification: Case Studies. Requirements Engineering Journal,
9(1): 67–82, February 2004.

[6] D.M. Berry and E. Kamsties. Ambiguity in Requirements Specification. Perspectives on
Requirements Engineering, J.C.S.P. Leite and J. Doorn, eds., Boston, MA, Kluwer, pp. 7–
44, 2004.

[7] R. Clayton, S. Rugaber, and L. Wills. Dowsing: A Tools Framework for Domain-Oriented
Browsing Software Artifacts. Proceedings of the 1998 Automated Software Engineering
Conference, pp. 204–207, Honolulu, HI, USA, May 1998.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

86

[8] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. The Linguistic Approach to the Natural
Language Requirements, Quality: Benefits of the use of an Automatic Tool, Proceedings
of the Twenty-Sixth Annual IEEE Computer Society –NASA GSFC Software Engineering
Workshop, pp. 97–105, Greenbelt, MA, 27–29 November, 2001.

[9] N. Fuchs and R. Schwitter. Attempto controlled English (ACE). The First International
Workshop On Controlled Language Applications (CLAW), Belgium, 1996.

[10] N. E. Fuchs, U. Schwertel, and R. Schwitter. Attempto Controlled English (ACE) Lan-
guage Manual, Version 3.0. Technical Report 99.03, Department of Computer Science,
University of Zurich, August 1999.

[11] D. Gause and G.Weinberg. Exploring Requirements: Quality before Design, New York,
NY, Dorset House, 1989.

[12] V. Gervasi and B. Nuseibeh. Lightweight validation of natural language requirements.
Softw., Pract. Exper., 32(2): 113–133, 2002.

[13] Graphviz—Graph Visualization Software home page, accessed 8 August 2007, http://
www.graphviz.org/Credits.php.

[14] R. Grishman. Information extraction: Techniques and challenges. SCIE’97: International
Summer School on Information Extraction, pp. 10–27, London, UK, 1997. Springer-Ver-
lag.

[15] H. M. Harmain and R. J. Gaizauskas. CM-builder: A natural language-based CASE tool
for object-oriented analysis. Autom. Softw. Eng., 10(2): 157–181, 2003.

[16] M. Heimdahl. An example: The lift (elevator) problem. http://www-users.cs.umn.edu/
heimdahl/formalmodels/elevator.htm, accessed on 14.12.2005.

[17] N. Juristo, A. M. Moreno, and M. Lopez. How to use linguistic instruments for object-ori-
ented analysis. IEEE Softw., 17(3): 80–89, 2000.

[18] L. Kof. Natural Language Processing for Requirements Engineering: Applicability to
Large Requirements Documents. Automated Software Engineering, A. Russo, A. Garcez,
and T. Menzies, eds., Proceedings of the Workshops, Linz, Austria, September 21, 2004.

[19] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry. Requirements for Tools for Ambigu-
ity Identification and Measurement in Natural Language Requirements Specifications,
Technical Report, School of Computer Science, University of Waterloo, Waterloo, ON,
Canada, 2007, http://se.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/
KZMB2007AmbTR.pdf.

[20] R. Lecoeuche. Finding Comparatively Important Concepts between Texts. Proceedings of
the 15th IEEE international Conference on Automated Software Engineering, Grenoble,
France, 2000.

[21] L. Mich. On the Use of Ambiguity Measures in Requirements Analysis, Proceedings of the
Sixth International Conference on Applications of Natural Language to Information Sys-
tems (NLDB), A. Moreno and R. van de Riet, eds., pp. 143–152, Madrid, Spain, 28–29
June, 2001.

[22] L. Mich, M. Franch, and L. N. Inverardi. Market research for requirements analysis using
linguistic tools. Requir. Eng., 9(2): 151–151, 2004.

[23] L. Mich and R. Garigliano. NL-OOPS: A requirements analysis tool based on natural lan-
guage processing. Proceedings of Third International Conference on Data Mining Methods
and Databases for Engineering, Bologna, Italy, 2002.

[24] L. Mich and R. Garigliano. Ambiguity measures in requirements engineering. Proceedings
of International Conference on Software–Theory and Practice (ICS2000), Sixteenth IFIP
World Computer Congress, Beijing, China, pp. 39–48, August 2000.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

87

[25] G. A. Miller, C. Felbaum, et al. WordNet Web Site. Princeton University, Princeton, NJ,
USA, accessed 12 March 2006, http://wordnet.princeton.edu/

[26] D. Mollá, R. Schwitter, F. Rinaldi, J. Dowdall, and M. Hess. NLP for answer extraction in
technical domains. Proceedings of the EACL 2003, Workshop on Natural Language
Processing (NLP) for Questions Answering, Budapest, Hungary, pp. 5–12, April 14, 2003.

[27] S. Nanduri and S. Rugaber. Requirements validation via automated natural language pars-
ing, Journal of Management Information Systems 12(3): 9–19, Winter 1995–96.

[28] K. Ryan. The role of natural language in requirements engineering. Proceedings of the In-
ternational Symposium on Requirements Engineering, pp. 240–242, San Diego, CA, Jan-
uary 1993.

[29] J. Rumbaugh. Object-Oriented Modeling and Design. Englewood-Cliffs, NJ, Prentice
Hall, 1991.

[30] D. D. Sleator and D. Temperley. Parsing English with a link grammar. Proceedings of the
Third International Workshop on Parsing Technologies, http://www.link.cs.cmu.edu/link/
papers/index.html, 1993.

[31] D. Spinellis. On the declarative specification of models. IEEE Software, 20(2): 94–96,
March/April 2003.

[32] D. Spinellis. UMLGraph - Declarative Drawing of UML Diagrams. http://www.spinel-
lis.gr/sw/umlgraph/, accessed 8 August 2007.

[33] R. Sutcliffe and A. McElligott. Using the link parser of Sleator and Temperley to analyse
a software manual corpus. Industrial Parsing of Software Manuals, pp. 89–102, 1995.

[34] D. Temperley, D. Sleator, and J. Lafferty. Link Grammar Home Page, accessed 1 August
2007, http://www.link.cs.cmu.edu/link/.

[35] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt. Automated Analysis of Requirement
Specifications, Proceedings of the Nineteenth International Conference on Software Engi-
neering (ICSE 97), pp. 161–171, Boston, MA, USA, 17–23 May, 1997.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

88

Environment Models for Specifying Functional and Non-

Functional Requirements for Reactive Systems

(Position paper)

Mikhail Auguston

Naval Postgraduate School, Computer Science Department,

 Monterey, California 93943-5118, USA

maugusto@nps.edu

Abstract. A formalism is suggested for specifying environment behavior models for software

test scenario generation based on attributed event grammars. The environment model may

contain descriptions of the events triggered by the software outputs and of the hazardous states

in which the system could arrive, thus providing a framework for specifying properties of

software behavior within the given environment. The behavior of the system can be rendered as

an event set with two partial ordering relations: precedence and inclusion (event trace). This

formalism may be used as a basis for automation tools for test generation, test result monitoring

and verification, for experiments to gather statistics about software safety, and for evaluating of

dependencies of system’s behavior on environment parameters. The monitoring activities can

be implemented within a uniform framework as computations over event traces.

Keywords: environment models, reactive systems, requirements specification and verification,

testing and safety assessment automation, event traces.

1 Introduction

Reactive and real-time systems are at the core of many safety-critical software

applications. In [1] an approach to testing automation for reactive and real-time

software systems based on attributed event grammars (AEG) has been introduced.

The main idea is to specify the environment behavior model as a set of events that

control the inputs for the system under the test (SUT) and that may adjust the

behavior depending on the outputs provided by the SUT (adaptive testing [5]). Figure

1 outlines the major steps in the testing process based on AEG.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

89

Test driver generated from the event trace

Pseudo-random

generation

SUT

Execution of the SUT

controlled by the test

driver

Parameterized AEG environment model

Event trace with actions for

sending/receiving messages to/from the SUT

representing a particular test scenario

Figure 1. Testing automation framework based on attributed event grammars as

environment models.

2. The Environment Model

The notion of event is central for our approach. An event is any detectable action in

the environment that could be relevant to the operation of the SUT. A keyboard

button pressed by the user, a group of alarm sensors triggered by an intruder, a

particular stage of a chemical reaction monitored by the system, and the detection of

an enemy missile are examples of events. In this approach an event usually is a time

interval, and has a beginning, an end, and a duration. An event has attributes, such as

type and timing attributes.

There are two basic relations defined for events: precedence (PRECEDES) and

inclusion (IN). Two events may be ordered, or one event may appear inside another

event. The behavior of the environment can be represented as a set of events with

these two basic relations defined for them (event trace). Usually event traces have a

certain structure (or constraints) in a given environment. The basic relations define a

partial order of events. Two events are not necessarily ordered; that is, they can

happen concurrently.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

90

The structure of possible event traces can be specified by event grammar. Here

identifiers stand for event types, sequence denotes precedence of events; (…|…)

denotes alternative; * means repetition zero or more times of ordered events; {a, b}

denotes a set of two events a and b without an ordering relation between them; and

{…}* denotes a set of zero or more events without an ordering relation between

them. The rule A::= B C means that an event of the type A contains (IN relation)

ordered events of types B and C correspondingly (PRECEDES relation).

Example 1.

OfficeAlarmSystem::= {DoorMonitoring,
 WindowMonitoring }

The OfficeAlarmSystem behavior is a set of two concurrent monitoring

threads.

DoorMonitoring::= DoorSensor *

The DoorMonitoring is a composite event, which contains a sequence of

ordered events of the type DoorSensor.

WindowMonitoring::= WindowSensor *

DoorSensor::= (DoorClosed | DoorAlarm)

The DoorSensor event may contain one of two possible alternatives.

WindowSensor::= (WindowClosed | WindowAlarm)

This event grammar defines a set of possible event traces – a model of a certain

environment. The purpose is to use it as a production grammar for random event trace

generation by traversing grammar rules and making random selections of alternatives

and numbers of repetitions.

2.1 Event Attributes

An event may have attributes and actions associated with it. Each event type may

have a different attribute set. Event grammar rules can be decorated with attribute

evaluation rules. The /action/ is performed immediately after the preceding event is

completed. Events usually have timing attributes like begin_time, end_time, and

duration. Some of those attributes can be defined in the grammar by appropriate

actions, while others may be calculated by appropriate default rules. Attributes can be

either inherited or synthesized; we assume that all attribute evaluation is

accomplished in a single pass, and the event grammar is traversed top-down, left-to-

right for producing a particular event trace. The interface with the SUT can be

specified by an action that sends input values to the SUT or listens for a message sent

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

91

by the SUT. This may be a subroutine in a common programming language like C or

Java that hides the necessary wrapping code.

Example 2.

An (over)simplified environment model for a missile defense system that tracks radar

sensors and at certain moment sends a command to proceed with an interception.

Attack::= { Missile_launch }* (=N)

The Attack event contains N concurrent Missile_launch events.

Missile_launch::=
 Boost_stage
 Middle_stage
 WHEN(Middle_stage.completed) Boom

The Boom event (which happens if the interception attempts have failed) represents

an environment event, which the SUT should try to avoid. It represents a “hazard

state” in which the system may arrive.

Middle_stage::=
 / Middle_stage.completed := True/

 (move

 CATCH SUT_launch_interception(hit_coordinates)
 WHEN (hit_coordinates ==
 Middle_stage.coordinates)
 [p(p1) interception
 / Middle_stage.completed := False;
 send_success(Middle_stage .coordinates);
 BREAK; /]

)* (<=M, EVERY 50 msec)

The sequence of move events within Middle_stage event may be interrupted by

receiving of an external event from the SUT. This will suspend the move event

sequence and will try to continue with event interception (with probability p1), which

simulates the missile interception event triggered by the SUT, followed by sending

notification to the SUT about the successful interception and the BREAK command,

which will terminate the move event iteration. If the interception event was not

generated, the move sequence will resume. This model allows several interception

attempts during the same missile launch event.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

92

move ::=
 /adjust(ENCLOSING Middle_stage.coordinates);
 send_radar_signal(ENCLOSING Middle_stage.coordinates);/

This rule provides attribute calculations and sends an input to the SUT. The

ENCLOSING construct provides access to the attributes of parent event. In general,

external events (i.e., events generated by the SUT) may be broadcasted to several

event listeners in the AEG, or may be exclusive and consumed by just one of the

listeners. These interface details are encapsulated in listener subroutines like

SUT_launch_interception() where the parameter hit_coordinates is

passed by reference.

3. Behavior Properties Specification

The next problem to be addressed after the system behavior model is set up is the

formalism specifying properties of the behavior. As a unifying framework we came

up with the concept of a computation over the event trace. This approach implies the

design of a special programming language for computations over the event traces. In

[2], [3], [4], a language FORMAN, based on functional paradigm and the use of event

patterns and aggregate operations over events, is suggested.

Event patterns describe the structure of events with possible context conditions.

Execution paths can be described by path expressions over events. This makes it

possible to write assertions not only about pre-conditions and post-conditions at event

trace points, but also about data flows in the entire trace.

The subroutine calls for inputs in the SUT and for catching outputs from the SUT can

be considered also as events with obvious precedence and inclusion relations with the

rest of event trace. The parameter values at the beginning and the end of those events

are specific attributes that provide the opportunity to write assertions about system

input/output values at different points in the execution history.

3.1 The Language for Computations over Event Traces

FORMAN is a high-level specification language for expressing intended behavior or

known types of error conditions when debugging or testing programs. FORMAN

supplies a means for writing assertions about events and event sequences and sets.

Monitoring activities can be implemented as computations over event traces. Typical

examples of monitoring include:

Assertion checking (test oracles)

Debugging queries

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

93

Profiles

Performance measurements

Behaviour visualization

The following provides an outline of the FORMAN constructs. More details are

available in [2], [3], [4]. The environment model from Example 2 will be used as a

background for further examples.

Event patterns

x: Middle_stage & x.Value_at_end(completed)== False

This pattern matches an event of the type Middle_stage if and only if the value of

the completed attribute at the end of this event is False.

List of events

Assuming that m is an event of the type Middle_stage.

[move FROM m]

This creates a list of move events from the enclosing even m preserving the

precedence relation between them.

List of values

Assuming that m is an event of the type Middle_stage.

[x: move FROM m APPLY x.Value_at_end(m.coordinates)]

This creates a list of values of coordinates attribute of the enclosing

Middle_stage event m taken at the end of each move event inside m. Note that

the value of m.coordinates may change after each move event.

Aggregate operations

Assuming that m is an event of the type Middle_stage.

OR/[x: SUT_launch_interception FROM m

 APPLY x.param[1] == x.Value_at_end(m.coordinates)]

This expression yields a Boolean value depending on whether there is at least one

instance x of SUT_launch_interception event inside m that yields True for

the expression x.param[1] == x.Value_at_end(m.coordinates). The

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

94

x.param[1] denotes the value of the first actual parameter of the subroutine

SUT_launch_interception call. This aggregate operation can be abbreviated

as:

EXISTS x: SUT_launch_interception FROM m

 (x.param[1] == x.Value_at_end(m.coordinates))

In a similar way, FOREACH quantifier can be introduced as an abbreviation for the

AND/ aggregate operation.

Generic requirements for the SUT behaviour within the given environment can be

specified in FORMAN. The following examples illustrate this.

Example 3.

The requirements for the SUT may include for example the following: “There is at

least one interception attempt for each Missile_launch event within the Attack

event.”

FOREACH x: Missile_launch FROM Attack

 EXISTS y: SUT_launch_interception FROM x

Example 4.

The first interception attempt should happen no later than 1 sec after the beginning of

the Missile_launch event.

FOREACH x: Missile_launch FROM Attack

 EXISTS y: SUT_launch_interception FROM x

y.begin_time – x.begin_time < 1 sec

Example 5.

There should not be unintercepted missile launches.

CARD/[Boom FROM Attack] == 0

The examples of FORMAN expressions above represent computations over the event

traces and can be performed during the test run or after it based on a log file collected

during the test run. This supports the requirement tracing as a part of testing process.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

95

This framework provides means for expressing quantifiers over events and ordering

and inclusion relations for events and is comparable with the expressive power of

other specification formalisms for behavior specification, such as temporal logic and

abstract event traces [6], [7].

4. Conclusions and Future Work

Traditionally, reactive systems and their environments are modeled with some kind of

finite state machine, like Statecharts or timing automata. For the purposes of scenario

(and corresponding test case) generation, the AEG approach may have several useful

features, in particular:

It is based on a precise behavior model in terms of an event trace with

precedence and inclusion relations, well suited to capture hierarchical and

concurrent behaviors. Since an event may be shared by other events, the model

can represent synchronization events as well.

The control structure suggested by the event grammar notation (sequence,

alternative, iteration, concurrent event set) and the top-down, left-to-right order

of traversal seems to be intuitive and close to the traditional imperative

programming style, hence facilitating the design of models.

Data flow of attributes is integrated with the control flow (i.e., event trace), and

AEG notation provides means for ease of navigation within the derivation tree

(e.g., the ENCLOSING event construct for referencing parent event attributes on

any distance in the derivation tree).

The probabilities for alternatives or number of iterations may be attached to

meaningful events in the model and are more intuitive and less numerous than in

Markov models based on finite state machines. This provides for a natural

definition of functional profiles for scenario generation.

The main advantages of the suggested approach may be summarized as follows.

Environment models specified by attributed event grammars provide for

automated generation of a large number of pseudo-random (but satisfying the

constraints) test drivers. This feature provides for gathering of statistical data for

safety assessment experiments.

All attribute values that do not depend on the SUT output can be calculated at the

generation time. As a result, the generated test driver contains only actions that

should be postponed to the run time (like sending inputs to the SUT and listening

to the SUT outputs), has a low overhead, and could be used for real-time test

drivers.

As any notation based on formal grammars, AEG is well structured, hierarchical,

and scalable.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

96

The environment model may contain events that represent hazardous states of the

environment. Experiments with the SUT embedded in the environment model

(“software-in-the-loop”) provide a constructive method for quantitative and

qualitative assessment of software.

Different environment models for different purposes can be designed, such as for

testing extreme scenarios by increasing probability or number of certain events,

or for load testing. The same safety assessment methodology as described above

may be applied for these special cases as well. The environment model itself is an

asset and can be reused.

It addresses the regression testing problem – generated test drivers can be saved

and reused. We expect that environment models will be changed relatively

seldom unless serious requirement errors are discovered during testing.

Event traces generated from the AEG model represent examples of SUT

interaction with the environment, and are in fact use cases, which could be useful

for requirements specification and other prototyping tasks.

The FORMAN expressions defining computations over event traces provide a

uniform framework to specify functional and not-functional properties of the

system under test, and can be used for test monitoring and result verification.

Essentially the framework provides a constructive way for tracing the conformance

with requirements specifications during the test run.

This work is under progress. In order to automate software assessment we are

developing a tool kit that will integrate the AEG test generator with the combinatorial

testing suite tool CTS developed by Alan Hartman and Leonid Raskin [8], and the test

result verification based on computations over event traces.

References

[1] M.Auguston, B.Michael, M.Shing, “Environment Behavior Models for Automation of

Testing and Assessment of System Safety,” Information and Software Technology,

Elsevier, Volume 48, Issue 10, October 2006, pp. 971-980

[2] M. Auguston, "FORMAN -- A Program Formal Annotation Language," Proceedings of

the 5th Israel Conference on Computer Systems and Software Engineering, Gerclia, May

1991, IEEE Computer Society Press, pp.149-154.

[3] M. Auguston, "Program Behavior Model Based on Event Grammar and Its Application for

Debugging Automation," in Proceedings of the 2nd International Workshop on Automated

and Algorithmic Debugging, Saint-Malo, France, May 1995.

[4] P. Fritzson, M. Auguston, N. Shahmehri, "Using Assertions in Declarative and

Operational Models for Automated Debugging," The Journal of Systems and Software 25,

1994, pp. 223-239.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

97

[5] R. M.Hierons, H.Ural, “Concerning the Ordering of Adaptive Test Sequences,” in Proc.

23rd IFIP Int. Conf. on Formal Techniques for Networked and Distributed Systems,

Berlin, Germany, Sept. 2003, Berlin: Springer, Lecture Notes in Computer Science, Vol.

2767, pp. 289-302.

[6] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification,. Springer-Verlag, 1992.

[7] A.Mazurkiewicz, Trace Theory, in W. Brauer et al., editors, Petri Nets, Applications and

Relationship to other Models of Concurrency, Vol. 255, Lecture Notes in Computer

Science, Springer Verlag, 1987, pp.279-324.

[8] IBM Combinatorial Test Services, http://www.alphaworks.ibm.com/tech/cts

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

98

Innovations on Natural Language Document Processing for Requirements
Engineering

V. Berzins, C. Martell, Luqi, V. Ivanchenko

Naval Postgraduate School
Monterey CA

1. Introduction

A major challenge in requirements engineering is dealing with changes, especially in the
context of systems of systems with correspondingly complex stakeholder communities
and critical systems with stringent dependability requirements. Documentation driven
development (DDD) is a recently developed approach for addressing these issues that
seeks to simultaneously improve agility and dependability via computer assistance
centered on a variety of documents [25-27]. The approach is based on a new view of
documents as computationally active knowledge bases that support computer aid for
many software engineering tasks from requirements engineering to system evolution,
which is quite different from the traditional view of documents as passive pieces of
paper. Value added comes from automatically materializing views of the documents
suitable for supporting different stakeholders and different automated processes, as well
as transformations that connect different levels of abstraction and representation.

At the level of requirements engineering, the central problems are related to bridging the
gap between stakeholders, who communicate in natural language, and software tools,
which depend on a variety of formal representations. A prominent problem is resolving
ambiguity, which is typical of natural language and to a somewhat lesser degree the
popular informal design notations such as UML. Others include finding implied but
unstated requirements, detecting conflicts between needs of different stakeholders, and
resolving such conflicts.

Progress on increasing flexibility without damaging reliability depends on computer aid,
and in an end-to-end process that includes requirements engineering, this leads to a need
for natural language processing that can help bridge the gap between natural stakeholder
communication and unambiguous requirements models such as those embodied in the
DDD view of documents.

In the 1970’s the automatic programming group at MIT headed by Prof. Bill Martin
sought to create an end-to-end system that went from user requirement documents to
running code for business information systems. The project made progress at the top and
bottom levels of this process, but the two ends were never integrated together.

The capabilities of natural language processing (NLP) software and our understanding of
requirements engineering (RE) have improved substantially over the past 30 years. This
paper re-examines how the current state of NLP can contribute to requirements
engineering, how close is it to making a practical impact in the context, and what needs to
be improved to enable widespread adoption. We examine the connection between a

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

99

hypothetical NLP front end and requirements engineering processes that would follow,
and identify some of the differences between generic NLP and domain-specific NLP
embedded in a requirements engineering process.

1.1. Challenges of NLP for Requirements Engineering

Requirements engineering is a critical part of the system development process because
requirement errors cost roughly 100 times less to correct during requirement engineering
than after system delivery [23]. This imposes extreme constraints on the accuracy of NLP
that we might use to derive system requirements. However, NLP accuracies are currently
in 90%-92% range, at best (see section 2). Therefore NLP must be augmented with other
methods for removing residual errors, and accuracy must be greatly improved if it is to be
seriously used for RE.

1.2. Why All is Not Yet Lost

NLP in the context of RE should be more tractable than generic NLP, because it has the
usual advantages of a domain-specific approach: scope is narrower, more is known about
the context, and specialized methods may apply. In particular, much more is known about
the intentions of the speaker and the context, such as typical goals and surrounding tasks.

1.3. Overview

Section 2 briefly summarizes recent trends in NLP. Section 3 outlines basic issues in
requirements engineering and how they relate to interactions between a NLP front end
and system development processes that follow. Both aspects have been simplified to help
bridge the gap between the two communities; our advanced apologies to experts in both
domains for leaving out some of the subtleties of each area. Section 4 outlines some
improvements to NLP that may be possible in the context of RE. Section 5 concludes
with an assessment of what should be done to improve likelihood of practical impact in
this direction.

2. Summary of recent trends in Natural Language Processing

Natural Language Processing (NLP) is a cross-cutting discipline that includes computer
science, linguistics, artificial intelligence and cognitive science, as well as statistics and
information theory. The objective of NLP is automated understanding and generation of
written natural languages (NL). Challenges of NLP include: the complexity and
ambiguity of language constructs; the fact that understanding a natural language often
requires representation of one’s knowledge about the outside world (tacit knowledge);
and the fact that non-linguistic context might also need to be considered, since it often
helps to improve the interpretation of speaker intentions. Table 1 provides some concrete
examples of the problems just mentioned. On the one hand, research in the young field of
NLP still struggles with conceptual difficulties such as context modeling or formalization
of speaker intentions [1]. On the other hand, the initial period of excessive optimism in

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

100

the field was followed by mature statistical analysis and creation of extensive linguistic
resources that have helped foster excellent progress in many NLP domains, e.g., part-of-
speech-tagging and parsing.

Table 1. Challenges of NLP
Problem Examples
1. Ambiguity of
word meaning and
scope

The word bank can refer to either a river bank or a financial
institution.
Natural languages usually don’t specify which word an adjective
modifies. For example, in the string “pretty little girls’ school”; do
the adjectives refer to “girl” or to “school”?

2. Complexity For determination of grammaticality, it is possible that an
exponential number of parse trees might need to be checked.

3. Tacit knowledge
and anaphora
resolution

The sentences We gave the monkeys the bananas because they
were hungry and We gave the monkeys the bananas because they
were over-ripe have the same surface grammatical structure.
However, in one of them the word they refers to the monkeys, in
the other it refers to the bananas: the sentence cannot be
understood properly without knowledge of the properties and
behavior of monkeys and bananas.

4. Non-linguistic
Context

Includes facial expression, gestures, disfluencies, time of the
year/day, recent events, etc.

One of the important methodological developments in NLP research was identifying
different levels of representation and processing, each with their own set relevant entities,
statistical relations, problems and solutions. NLP distinguishes at least four processing
levels: lexical, syntactic, semantic, and pragmatic. Each level has its own patterns of
ambiguity (see table 2) and corresponding processing methods. As a rule of thumb, the
higher the level, the longer the contextual dependencies that have to be taken into
account. Importantly, processing at each level is not generally independent. For example,
knowing semantics of a sentence may help to disambiguate the part of speech for a
particular word.

NLP can be viewed as a sequence of processing steps that starts from a raw text and
proceeds through each higher level of representation. Under this approach the output of a
lower level is the input for a higher level. Though there are some interdependencies, for
simplicity each level is most often considered independently. This assumption greatly
facilitates the identification of specific features at each level. It is also important to note
that while processing on lexical and syntactical levels is relatively well defined, the
higher levels of NLP are not standardized in terms of their objectives or output formats.
This is due to the overall complexity of the processing on higher levels and in the extra-
linguistic features involved. For example, in order to define pragmatic content for a text
one needs to know the intentions of the reader or writer, which typically are not the part
of a text. To clarify this point, consider a reader who tries to identify a timeline of events
in the text versus another reader who is interested in the text topic. Thus, a simplified
vision of NLP is sequential processing of natural language representations at 4 different

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

101

levels of abstraction. A refined version of the vision involves pipelined concurrent
processing of the levels with some feedback from higher levels to lower levels.

Since many NLP techniques rely on statistical dependencies in the text, the construction
of large-scale, comprehensive data sets, or corpora, has become an important thrust in
NLP research. These corpora are composed of a set of texts with words tagged with
various labels (e.g. part of speech (POS), semantic, syntactic and role-based ones). Table
2 gives some examples. These corpora provide a rich source for probabilistic modeling
of languages. On the other hand, each corpus is limited to a specific domain of a
particular language (e.g. English novels and news). The problem of adjusting of either
corpora or tools to another domain is yet to be solved, although progress is being made
[2-6, 13]. Below we briefly explain each step of our simplified NLP model and provide a
description of corpora that are used to derive statistical dependencies.

Table 2. Levels of NLP.

Level Problems Methods/KB
Lexical Part of speech (POS)

tagging
Part of speech tagger
Corpora: WSJ, Brown Corpus

Syntactic Generation of parse-trees
representing syntactic
structure of sentence

Probabilistic parsers;
Corpora: WSJ, Brown Corpus

Semantic Reference resolution;
Context modeling; Word-
Sense Disambiguation

Semantic parsers, WSD Classifiers;
Corpora: FrameNet, SENSEVAL

Pragmatic Goal, content or topic of
a text or discourse;
Anaphora Resolution

Text summarization;
Text categorization
Corpora: WordNet, SummBank

The first step in processing texts is finding word boundaries, called tokenization, and
assigning each word a part of speech (e.g. noun, verb, adjective or adverb; quite
surprisingly, there are around 40 different POS categories in the most common scheme).
This process is called “part of speech tagging” (POS-tagging) and it provides important
information for all following stages [14, 15]. Usually, POS-tagging is carried out
iteratively using short contextual dependencies that specify how a POS of a given word
depends on the POS of the previous word. These dependencies are described by a set of
conditional probabilities of the form P(POS1 | POS2) where POS1 is part of speech we
are interested in and POS2 is the part of speech of the previous word. Contemporary
methods of POS-tagging achieve tagging precision above around 97%.

The second step of NLP analyzes larger chunks of a sentence than individual words. In
particular, it identifies Noun Phrases (NP), Verb Phrases (VP), Prepositional Phrases
(PP), etc. The corresponding method, called syntactic parsing, outputs syntactic trees that
provides both labels and the hierarchical structure of a sentence. Most modern parsers are
at least partly statistical; that is, they rely on a corpus of training data which has already
been annotated (parsed by hand). In short, they use POS information from a previous
level but within a larger context to figure out the conditional probabilities of syntactic

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

102

constituents. Parsing methods condition probabilities not just on POSs but also on the
words themselves. State of the art in parsing is currently around 92% [6-8]. One of the
challenges of syntactic parsing is that each sentence can have multiple valid parse trees.
Note, that parsing difficulties can come from propagation of inaccuracies from a previous
stage of processing (see table 3).

Table 3. Two alternative parsing trees of the same sentence. In this example, the ambiguity in parsing
comes from the wrong assignments of different POS on a previous stage of processing. Even with the
correct POS assignment, syntactic tree can vary depending on the attachment of proportional
phrases and other factors.

The next step in our simplified NLP model is semantic processing. Issues here concern
how to represent the meaning of a sentence, how to make linguistic inferences, as well as
word-sense disambiguation (WSD). WSD is the problem of determining in which sense
a word is used in a given context [16]. For example, consider the word bass that has two
distinct senses: a type of fish and a tone of low frequency. In the two following sentences
it is clear to a human which senses are used:

1. The bass part of the song is very moving
2. I went fishing for some sea bass

However, for machines WSD is a difficult task. Compared to POS-tagging, which
requires a fairly short context, WSD might involve much longer dependencies.
Successful contemporary implementations of WSD use Kernel methods such as SVM
trained on the SemCor knowledge base (which contains 352 texts). Most of the texts are
annotated with POS, lemma, and WordNet synset. The performance is usually much
worse than in POS tagging and is around 75% for English [16, 17]. Such low
performance may suggest that contemporary linguistic representations developed for
statistical classifiers are not adequate enough to model word senses. One of the solutions
is to use better structured input representations that incorporate relations between words
such as the ones included in the WordNet [18]. This knowledge base, developed at
Princeton University, addresses not only POS and synsets but also such relationships as
synonymy/antonymy, meronymy/holonymy (part/whole), hypernymy/hyponym (super
and subclasses).

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

103

While WordNet describes possible word meanings by corresponding synsets, example
sentences, and a rich set of relations there is still a need to automatically identify meaning
in a given context. There were several attempts to systematically analyze meaning of
words, for example, using argument structure. Levin (1993) proposed that verbs semantic
classes correlate with their syntactic and morphological structure. This allowed her to
classify verbs in groups such as Put Verbs (mount, place, put) or Correspond Verbs
(agree, argue, clash, collaborate, communicate, etc.). However, more detailed
examination of Levin’s classes revealed that better classification should be at least
partially semantically motivated. This started the FrameNet project at Berkeley
University. In FrameNet, not only verbs but also other POSs are assigned role frames.
The FrameNet lexical database currently contains more than 10,000 lexical units (e.g.
"traffic light", "take care of", "by the way"), more than 6,100 of which are fully
annotated, in more than 825 semantic frames, exemplified in more than 135,000
annotated sentences.

The basic idea is that one cannot fully understand the meaning of a single word without
access to all the essential knowledge that relates to that word. For example, one would
not be able to understand the word "sell" without knowing anything about the situation of
commercial transfer, which also involves, among other things, a seller, a buyer, goods,
money, the relation between the money and the goods, the relations between the seller
and the goods and the money, the relation between the buyer and the goods and the
money and so on. Thus, a word activates, or evokes, a frame of semantic knowledge
relating to the specific concept it refers to, or highlights, in frame semantic terminology
(see fig. 1). FrameNet produces much more semantically consistent categories than
Levin’s classification [19, 20].

Figure 1. Shallow semantic parser (FrameNet-based by Katrin Erk).

Finally, we turn briefly to pragmatics, which is concerned with understanding the
relationships between language and context. For example, an important aspect of this
level of analysis is anaphora resolution. Simply put, anaphora resolution is concerned
with the problem of resolving what a pronoun or a noun phrase refers to. For example,
consider the following two cases:

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

104

1. John helped Mary. He was kind.
2. There were dresses of several different colors and styles. They were all pretty and
labeled with price tags. Sally chose a blue one. Mary chose a skimpy one.

In case 1 “He” clearly refers to John. But to what does “one” refer in case 2? Humans
have no problem understanding that the mentions of “one” in the third and forth
sentences refer to “they” in the second sentence, which, in turn, refers to “dresses” in the
first sentence. However, for a machine, the mentions of “one” could also have referred to
“price tags” in the second sentence. For more complex computer communication, like
blogs or on-line chat, anaphora resolution is even harder. Other forms of discourse
analysis include understanding the discourse structure—i.e., what role does a sentence
play in the discourse—and speaker turn-taking.

3. NLP in the Context of RE
NLP in the context of RE differs from general purpose NLP because the inputs and
outputs are different, as illustrated in Figure 2. The result of the NLP front end should be
a model of the requirements. Although there are a variety of notations and formalisms for
requirements, we believe that the structure summarized in this section provides a useful
reference model that is close to the mark. For a detailed description and examples see
[24]. The requirements are most usefully conceptualized as a database containing
structured information, rather than as a text document.

Abstractly the requirements database consists of:
1. Problem ontology, which is called an environment model in [24]. This provides an
unambiguous vocabulary for defining the requirements: each symbol denotes a unique
concept with a well-defined meaning. In our specific framework, a concept can be a type,
relationship, attribute, or constant (distinguished instance of a type). Related concepts are
generally grouped into modules, often related to types, and are subject to specialization
and multiple inheritance that combines constraints by conjunction. Meaning of concepts
is described by associated natural language, logical formulas, real-world measurement
processes, or links to other defining documents. In particular, concepts can be uniquely
mapped into symbols of a typed logic or other formalism to support further analysis,
transformation, and simplification.

2. Requirements hierarchy. Each node in the hierarchy represents a requirement, which is
a constraint that the proposed system will have to satisfy. Nodes can have many views,
such as natural language descriptions, diagrams, mathematical formulae, etc. Higher level
nodes are more abstract and may leave many details unspecified. Lower level nodes
refine the meaning of their parent node by specifying additional details related to the
parent requirement. In a completed hierarchy, leaf nodes are defined in terms of the
vocabulary of the problem ontology, and are unambiguous in the sense that they do not
contain references to undefined concepts. If the requirements are to be used as the basis
for automated testing of the system under development, then the concepts used in the
requirements must all be measurable or computable from measurable concepts.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

105

3. System model. Later stages of requirements engineering generally produce a model of
the proposed system at some level of detail. At a minimum, interfaces and externally
visible behavior of the proposed system must be modeled, along with its interactions with
its context – the (human) stakeholders of the system and external systems it
communicates with. There are a variety of notations for this type of model, including use
cases, UML, many formal modeling languages, as well as architecture description
languages.

The requirements should serve both as guidance for system developers and as a reference
standard on which system quality assurance is based. In highly automated processes that
current software engineering research is seeking to enable, the information in the
requirements should be sufficiently complete and precise to enable automatic generation
of at least the software that can test a system implementation to determine whether or not
it meets the requirements to within a given statistical confidence level. In some visions of
model-based domain specific development, information in the requirements may also be
used to directly generate parts of the deliverable code.

In any case, the delivered system is unlikely to be any better than the requirements,
reinforcing the mantra that accuracy of the requirements has great importance. Existing
manual processes for deriving requirements from informal stakeholder statements
therefore incorporate a variety of checking procedures that include reviews,
storyboarding, simulation and prototype demonstration, dependency tracing, consistency
checking, and many others.

Other processes that must be supported after formalization of the stakeholder input
include detecting and resolving conflicts between needs of different stakeholders, finding
errors of omission, and finding cases where different stakeholders may agree on the
wording of a requirement but not on its meaning. This last case is significant in large
systems because they typically involve stakeholders from different specializations.

4. How NLP Can Be Improved in the Context of RE

Generic NLP has only one set of inputs, the natural language text and the accompanying
general linguistic resources. In the context of RE there should be additional information:
identification of the source of the text, including identity, role in the process, expertise
areas, etc. There are also other sources of information, including general purpose built-in
information about requirements engineering processes, system development processes,
and typical problem domain concepts as well as information about the kind of system to
be developed in each particular project. All of this information can be used to limit the
search space for the NLP, condition the probabilities of possible word senses, and
provide models of the context of the discourse that can provide the basis for judging
likelihood of interpretations for much larger bits of text than individual words or phrases.
This information can drive post-processing that seeks to identify particular types of errors
or just to identify and question the generated interpretations that have weak evidence.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

106

Problem Model

Problem
OntologyGeneral

Language Resources

Domain-Specific
Language Resources

Stakeholder Input

Natural-Language
Processing

Module

Domain-Specific
Language Model

Domain-Specific

Ontology
Text of Proposed

Requirement
Stakeholder
Meta-data

Gen
Langua

General

Ontology
System
Model

Figure 2. The Co

5. Conclusions

It appears that NL
engineering, but i
and existing meth
process to improv

Even approximat
documents, using
their fragments ev

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design
3

Requirements

Database

eral
ge Model

nnection between NLP and RE processes

P is getting close to the point where it can contribute to requirements
t cannot do so in a vacuum. The results must be checked and reviewed,
ods must be improved by using more aspects of the context of the
e accuracy.

e NLP could facilitate text analysis and reduce workload by prioritizing
 context for effective search, making summaries, and classifying texts or
en if accuracy of the process is insufficient to support requirements

107

engineering based on the raw output of the NLP. The difference from fully automated
processing is that NLP methods will typically give users several options and it will be
their responsibility to select the right one. Thus currently the most safe and effective use
of NLP is to integrate its methods with human processing as it is conceptualized in
Human System Integration (HSI) framework [21, 22].

The issues that will determine whether or not NLP enters widespread use in requirements
engineering are economic: it must cost less and produce more accurate results than
corresponding manual processes that rely on human experts to interpret and model the
raw statements from the stakeholders. This is a challenging goal that reaches beyond the
traditional bounds of NLP to include social, organizational and psychological issues.

References

[1] L.Iwanska, W. Zadrozny (1997). Introduction to the Special Issue on Context in
Natural Language. Processing Computational Intelligence 13 (3), 301–308.

[2] R. Hwa, M. Osborne, A. Sarkar, and M. Steedman. 2003. Corrected Co-training for
Statistical Parsers. In the Proceedings of the Workshop on the Continuum from Labeled
to Unlabeled Data in Machine Learning and Data Mining, International Conference of
Machine Learning, Washington D.C.

[3] M. Steedman, R. Hwa, S. Clark, M. Osborne, A. Sarkar, J. Hockenmaier, P. Ruhlen,
S. Baker, and J. Crim. 2003. Example Selection for Bootstrapping Statistical Parsers.
In the Proceedings of the Joint Conference of Human Language Technologies and the
Annual Meeting of the North American Chapter of the ACL, Edmonton, Canada.

[4] C. Xi and R. Hwa. 2005. A Backoff Model for Bootstrapping Resources for Non-
English Languages. In the Proceedings of HLT/EMNLP-05, Vancouver, Canada.

[5] R. Hwa. 1999. Supervised Grammar Induction using Training Data with Limited
Constituent Information. In the Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics, pp. 73-77, College Park, Maryland.

[6] D. McClosky, E. Charniak, and M. Johnson. Effective Self-Training for Parsing.
Proceedings of the Conference on Human Language Technology and North American
chapter of the Association for Computational Linguistics (HLT-NAACL 2006),
Brooklyn, New York.

 [7] M. Collins. Three generative, lexicalized models for statistical parsing. In 35th
Annual Meeting of the ACL, 1997.

[8] M. Collins. 2000. Discriminative reranking for natural language parsing. In Machine
Learning: Proceedings of the 17th International Conference (ICML 2000), pages 175–
182, Stanford, California.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

108

[9] M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330.

[10] J. Kupiec, 1992. Robust Part-of-Speech Tagging Using a Hidden Markov Model.
Computer Speech and Language 6, pp. 225-242.

[11] B. Merialdo, 1994. Tagging English Text with a Probabilistic Model. Computational
Linguistics 20(2), pp. 155--171.

[12] G. Niyu, J. Hale, and E. Charniak. 1998. A statistical approach to anaphora
resolution. In Proceedings of the Sixth Workshop on Ven d Large Corpora, pages 161--
170, Montreal (Canada).

[13] M. Steedman, M. Osborne, A. Sarkar, S. Clark, R. Hwa, J. Hockenmaier, P. Ruhlen,
S. Baker, and J. Crim. 2003. Bootstrapping Statistical Parsers from Small Datasets.
In the Proceedings of the Tenth Conference of the European Chapter of the ACL,
Budapest, Hungary.

[14] E. Charniak. 1997. "Statistical Techniques for Natural Language Parsing". AI
Magazine 18(4):33-44.

[15] H. Halteren, J. Zavrel, W. Daelemans. 2001. Improving Accuracy in NLP Through
Combination of Machine Learning Systems. Computational Linguistics. 27(2): 199-229.

[16] R. Mihalcea, Knowledge Based Methods for Word Sense Disambiguation, book
chapter to appear in Word Sense Disambiguation: Algorithms, Applications, and Trends,
Editors Phil Edmonds and Eneko Agirre, Kluwer, 2006.

[17] R. Mihalcea, Unsupervised Large-Vocabulary Word Sense Disambiguation with
Graph-based Algorithms for Sequence Data Labeling. In Proceedings of the Joint
Conference on Human Language Technology / Empirical Methods in Natural Language
Processing (HLT/EMNLP), Vancouver, October, 2005.

[18] G. Miller , R. Beckwith , C. Fellbaum , D. Gross , and K. Miller. Introduction to
WordNet: An On-line Lexical Database. Int J Lexicography 3: 235-244.

[19] K. Erk and S. Pado: Shalmaneser - a flexible toolbox for semantic role assignment.
Proceedings of LREC 2006, Genoa, Italy

[20] B. Levin. 1993. English Verb Class and Alternations: A Preliminary
Investigation. Chicago: University of Chicago Press. Manning, Christopher. 1993.

[21] Plummer S. USAF. (2000). “Memorandum: Awareness of Human-Systems
Integration (HSI) in Air Force Acquisitions”.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

109

[22] Blasch, E. Assembling a distributed fused information-based human-computer
cognitive decision making tool, Aerospace and Electronic Systems Magazine, IEEE,
pp. 11-17, Volume: 15, Issue: 5, May 2000.

[23] Boehm, B. Software Engineering Economics, Prentice-Hall, 1981.

[24] V. Berzins and Luqi, Software Engineering with Abstractions, Addison-Wesley
1991.

[25] Luqi, L. Zhang, V. Berzins, Y. Qiao, “Documentation Driven Development for
Complex Real-Time Systems”, IEEE Transactions on Software Engineering, Vol. 30,
No. 12, December 2004, pp. 936-952.

[26] Luqi, “Transforming Documents to Evolve High-Confidence Systems”, Proceedings
of Workshop on Advances in Computer Science and Engineering, Berkeley, CA, May 6,
2006, pp. 71-72.

[27] Luqi, L. Zhang, “Documentation Driven Evolution of Complex Systems”,
Proceedings of Workshop on Advances in Computer Science and Engineering, May 6,
2006, pp.141-170.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

110

A Learners' Quanta Based Framework for

Identification of Requirements and Automated Design of

Dynamic Web-based Courseware

Nabendu Chaki1, Ranjan Dasgupta2

1 Dept. of Computer Science & Engineering, University of Calcutta, Kolkata 700009, India
2 Dept. of Computer Science & Engineering, National Institute of Technical Teahers'

Training & Research, Kolkata 700064, India

{1nccomp@caluniv.ac.in, 2ranjandasgupta@hotmail.com}

Abstract. Learner-centric design of courseware is in the focus of computer

aided distance learning for some time now. However, as the courses are more

often than not pre-designed, these hardly offer any dynamism and flexibility to

cater to the varied need and knowledge background of individual learners. The

present work aims towards providing a framework in which the learner would

be able to input his learning needs and backgrounds. The framework develops a

formal requirements set from this and automates the design of web-based

courseware. The collaboration between the stakeholders, i.e., both the learner

and the course coordinator, helps improving the quality of the design. In our

earlier work, we have proposed a learner-centric, modular approach, named

Learners' Quanta (LQ) mode. This LQ model has been utilized and extended

here to build the proposed framework. We also developed a prototype for

evaluation and further exploration of the idea.

Keywords: Requirement Set, Computer Aided Distance Learning, Learners'

Quanta, Knowledge Factors, Reusability, Prototype.

1 Introduction

The identification of specific requirements for individual learners of vastly different

background and the design of effective courseware for the use of distance learning are

being considered as a challenging problem all over the globe. Several efforts in this

regard have been reported which are mostly course-specific.

The non-linear way of storage of information in the form of hypertext has brought

a revolutionary change in the teaching-learning process [1, 2, 3, 5, 11]. In the

hypertext document, links have been established in such a way that the user can

explore, browse and search for not only a particular item but can also get information

regarding relevant/associated issues. Cockertion and Shimell evaluated hypermedia

document as a learning tool [4]. They focused their study on hypermedia document

and included graphical controls for simple interaction behavior. The challenges, from

multiple aspects have been well explored by Chen [1]. Many of these works, however,

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

111

emphasize more on pedagogical and other issues rather than the identification of

requirements.

The working group IEEE "1484 Learning Technology Standards Committee

(LTSC)" has designed an architecture called Learning Technology System

Architecture (LTSA) to standardize web-based content delivery for all learning

technology systems [6]. The LTSA specification follows a basic hypermedia approach

with management software working behind to control the sequencing of the

hypermedia documents.

Keith S. Taber and his associates [9], at the University of Cambridge put forward a

project aimed to integrate English and Science standards using technology as a

vehicle. The emphasis, however, was merely to improve the presentation of the

learning material. Dr. John Munro [7] of the University of Melbourne has also worked

on identification of the requirements for the effective delivery of course content. He

essentially tried to analyze learning based on some pre-defined key issues. Guanon

Zhang [12] has designed a computer based knowledge system for assisting persons in

making decisions and predictions upon human or data-mining knowledge. This work

is the closest research to what we are doing. However, in spite of having an almost

identical goal to offer maximum flexibility to the individual learner, our approach to

meet the target is distinctly different.

The work by S Ray, N Chaki, R Dasgupta [8] presents the LQ model where a

course is sub-divided into several topics. The present work is an extension of this LQ

model. In this paper, using the LQ model, we have proposed a framework to register

the need of the users. A finite set of requirements are identified from this in terms of

the target LQs [section 3]. The framework subsequently modifies this initial set of

target LQs towards identification of the entire set of LQs that are needed to meet the

learning objective. Finally, a proper learning sequence of the selected set of LQs is

devised. Besides, the pool of LQs is so designed that it would be able to cater to a

wide spectrum of learners with varying requirements. A few screen shots of the

prototype that is built and tested following LQ model has been discussed in section 4.

Before presenting these details, however, we have briefly reviewed the LQ model

[section 2] for the sake of completeness.

2 The Learners' Quanta Model

In this model a course is sub-divided into several topics. A participant may choose

one or more topics or the entire course as per his requirement. There shall be a large

number of LQs for a subject area or topic of study. These LQs together form a LQ

cloud for the specific topic of study. In other words, a topic is constituted by a

suitable combination of LQs as chosen by the course coordinator in accordance with

the requirement/learning style of the participant.

Learners' Quanta of Study: A Learners' quantum of study is a measured part of a

topic with a well defined set of output objective(s) and requiring a precise input
knowledge on the part of the learner.

Several Learners' Quanta on some topics or sub-topics are being designed and

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

112

Thai Cuisine

Thai Curries Thai Seafood Thai Soups

developed by the authors and they constitute Learners' Quanta Cloud (LQC). In any

LQC, there may exist more than one LQs on the same topic or sub-topic written by

same author or different authors having same or different output objectives and input

knowledge specifications. Based on the requirement of each participant, a subset of

LQs are chosen from the LQC and sequencing of the LQs (i.e. LQ chaining) need to

be done so that on completion of the entire chain of LQs, the participant can be

elevated to the desired level from his initial knowledge level.

Figure 1: Learners' Quanta and LQ Cloud

2.1 Major Advantages of Learners' Quanta Model:

In this section, we just briefly mention only the major advantages of using the LQ

approach keeping in mind the limited space.

Reusability: Design, development of web-based study material is still a costly

affair and this can be reduced by reusing the same. In this model, a set of Learners'

quanta of study may be reused by different course coordinator for different programs.

Naturally more effective course-material may be produced by the author, if he gets his

investment back through re-using.

Requirement Identification: The flexibility is increased highly by this approach

and the participant can play a significant role in selecting his choice. This in turn leads

to evolve a more effective requirements specification.

Cost: The cost of learning may be trimmed off by avoiding un-necessary portion of

study. Re-usability also causes a drop in the cost.

Quality Improvement: The collaborative effort of the stakeholders not only

improves the effectiveness, but improves the quality of the end-product, i.e., the

designed courseware, in this case.

2.2 Terminology used

Before we introduce the algorithm, let us present a formal introduction to all the

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

113

terminologies that are referred in the rest of the paper.

Learner’s Quanta (LQ): A Learner’s Quantum of study is a measured part of a

topic with a specific output objective requiring a specific input knowledge on part of

the learner.

Learner’s Quanta Cloud (LQC): A Learners' Quanta Cloud (LQC) is a collection

of semantically related group of learners' quanta. Any arbitrary quanta, LQi could be

part of more than one LQC, where LQs are grouped based on different semantics. In

simpler terms, LQC is a set of related LQs.

As illustrated in figure 1, this semantic relation could be, e.g., that two LQs are

both related to learning on Thai seafood cooking.

Knowledge Factor (KF): A Knowledge Factor (KF) is an atomic element of

information. Each LQ is associated with a unique set of input KF and another set of

output KFs. The intersection of the input and output set for a particular KF is usually

a Null set.

Target Knowledge Factors: The Target Knowledge Factors (TKF) are the set of

KFs specified by the user as the set of output objectives he/she wishes to acquire.

Known Knowledge Factors: The Known Knowledge Factors (KKF) are the set of

KFs specified by the user as the set of already known elements of information for a

particular learner.

LQ Dictionary: The LQ dictionary for a subject area refers to the entire set of LQs

with their corresponding KFs stored in one specific place. The dictionary is different

for each subject area.

3 LQ based Requirements Specification and Designing

Given

I: Input knowledge set of the learner

I is the set of KKFs as defined in section 2.2.

R: Requirement knowledge set specified by the learner

R is the set of TKFs as defined in section 2.2.

Oi: Objective set to be attained by a learner on completion of the ith LQ

Pi: Pre-requisite knowledge set for the ith LQ

In a real life situation, the intersection of R and I would produce a Null set. Now

the problem is to identify the required set S of minimal LQs from the available LQ

cloud so that any learner with given Input knowledge background I can reach the level

R. The condition of minimalism depends upon various factors according to the

requirements and preferences of the learner. The metric for minimalism could be

duration of learning time, total cost of learning or just the number of LQs in the

proposed solution.

Whatever be the condition of minimalism, in order to identify the required set S of

minimal LQs, the system has to find an initial set S1 of k1 LQs from the LQC, such

that the set union of the objectives of the derived set S1 of LQs minimally covers R,

i.e.

Oi R, (1 i k1) (1)

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

114

R
k1

LQs

k2

LQs

ki

LQs
I

Q1Qi-1

n = k1+k2+k3+….+ki

There may be zero or more sets of LQs for which the condition 1 mentioned above

are true. In the event that no such set of LQs exists which meets condition 1, the LQC

under consideration cannot provide any solution for the proposed learner requirement.

After the k1 number of LQs for the initial solution set is made available, we do a

backward search amongst these k1 LQs in the LQ cloud to finally reach the Input

knowledge set (I) of the learner. However, in this process, if we do not find any such

single LQ or multiple LQs, we can conclude that the LQs in set S1 does not provide

any sequence of LQs from the existing LQ cloud to form a path for the learner with

Input knowledge level I to reach the specified requirement level R.

Once the k1 number of LQs for the initial solution set is made available, we have to

look at a sum of individual pre-requisite knowledge for each of these k1 LQs. Let Q1

represents this, i.e.

Q1 = Pi , (1 i k1) (2)

If the learner’s input knowledge set (I) of the learner covers Q1 , then our task is

almost over, i.e., we could identify the set of LQs that this learner requires. In other

words, the initial set of LQs S1 has been identified as the final and target set S at the

end of just a single iteration. However, in a real life situation, more than often we

would find that the learner’s input knowledge set I cannot cover set Q1 .

In order to find the complete list of LQs from the initial list, backward searching

through each of the LQs satisfying 1 is required. This is done as follows:

Considering I as the Input knowledge set of the learner, in order to learn the k1

selected LQs, the revised set of requirements will be,

Q1 = Q1 - I (3)

Figure 2: Identifying the required minimal set of LQs

This set of pre-requisites Q1 is beyond the input knowledge of the proposed learner

and is available from the LQ cloud under consideration. Thus the system would

identify a new set of k2 LQs that minimally covers Q1. The learner, therefore, has to

study these k2 additional LQs to build the pre-requisite knowledge level as required to

study the set S1.

These new set S2 of (k1+k2) LQs in total is thus identified in this second iteration as

the revised set of minimal LQs that are to be studied. As the pre-requisite knowledge

for the first set of k1 LQs are to be covered by the sum of the Objective sets of k2

additional LQs and I together, the problem reduces down to finding the pre-requisite

knowledge for these k2 LQs (see figure 2) and to cross-check if that is covered by the

learner’s input knowledge I.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

115

At this stage of the processing, the system would take a set union over the

individual pre-requisite knowledge for each of these additional k2 LQs to obtain Q2 .

The iterative process is continued till a set of kg additional LQs is identified in the gth

iteration whose set of pre-requisites, Qg are covered entirely by I. The set Sg derived

up to this stage, is to be marked as the solution set S. If the cardinality of this final

solution set S, is n then, n = (k1 + k2 + k3 + …… +kg).

Once the LQs are identified, the sequence through which the learner will proceed

must be tracked. For this, we generate pre-requisite directed graph with LQs as node

and the edges are formed by the pre-requisite data. Thus if P & Q are two LQs where

P is the pre-requisite LQ for Q, we draw an edge from P to Q. If we draw the graph of

the LQs as explained above, we may reach a number of disjoint acyclic digraph with

multiple zero-pre-requisite LQs and with multiple finish-LQs.

By the term zero-pre-requisite LQ, we identify those LQs, for which the participant

has the Input knowledge, i.e Pi I and the finish-LQ represents those LQs for which

intersection of R and Oi is non-null and not a pre-requisite of any other LQ in the

graph. However, there may be multiple nodes in the graph for which intersection of R

and Oi is non-null.

Finally, to derive the sequencing of the LQs we use the topological sort by

identifying successively nodes with zero in-degree and removing the edges drawn

from it before the second iteration. However, if we reach nodes with equal sequence

number, we can offer those LQs in parallel.

4 Developing the Prototype

In order to validate the proposed design, we have developed a prototype for the

system. We have used an object-oriented platform for the purpose. The prototype has

been developed in three stages. At first, the class modules have been compiled into a

Dynamic Link Library (DLL).

In the next phase, a standalone ActiveX component LQBox is defined. A setup

package has also been made for this control such that any user can use this component

as a black-box without worrying much about the implementation logic behind the

scenes. The LQBox component is also compatible with all the MS languages.

Finally, an application is developed to depict the working of the modules

mentioned above. Data entry, validation and solution generation can be hence shown.

Using this library as a reference makes all the classes available.

4.1 Architecture of the Prototype

We have implemented the system in a three tier, modular, layered framework. It

conforms to the LTSA guidelines [6] and performs the job of a “system coach”. The

architecture has the following characteristics.

Task directed: The design of the entire system has been such so as to assist in the

systematic approach to solving the adaptive course scheduling problem

Modular: The entire system is modularized such that each module does one

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

116

LQ Engine

Wrapper (Application Layer)

LQ Dictionary
L

LL

L

Target KFs Known KFs

specific task. Good cohesion between modules has been maintained.

Layered: The system has been developed as a three tier application. The

bottommost layer is the backend layer. The LQ Dictionary as well as the Target and

Known Knowledge Factors may be kept in a database or in a text file. The main focus

of the work is to develop the middle layer. It has been implemented as a DLL and a

component is associated with it. The top layer is basically a “wrapper layer” providing

the necessary user interface for use.

Component based: The use of a component based approach helps create modular

and reusable system. One can build upon an existing component such that

productivity can be vastly increased.

Figure 3: Architecture of the system

Extendible: As the system conforms to the LTSA architecture, is modular and

reusable in nature, it may be extended by adding further layers. Expandability can be

both horizontal and vertical. More components may be added both in conjunction

with the existing or as wrappers to the system.

User friendly: Each of the modules clearly specifies their input and output

requirements. Error reporting is also managed using an error model. The UI has been

intuitively designed such that ease of usage of the system is greatly enhanced.

The development of the logic of the system was thought of in a step-by-step

manner. First of all, the classes containing data were defined. This included the design

of class LQ, class LQDictionary, class KFSet. and the class LQEngine. All of these

classes have been compiled into a Dynamic Link Library (DLL).

The ActiveX component is the actual “Black Box” of the prototype that controls

the functioning. We have used an MS FlexiGrid Control to display the LQs generated

in every pass. We call this component the LQBox. A setup package has also been

made for this control such that any user can use this component as a black-box

without worrying much about the implementation logic behind the scenes. The

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

117

LQBox component is also compatible with all the MS languages.

The task of searching for a minimal LQ set is done by the LQDictionary. It returns

a new LQDictionary object which is a subset of the Original LQDictionary. The job

of successively refining the Target KF set, checking with the Known Kfset and with

the basic LQs is done by the LQBox. On the whole, the system has been modeled as a

set of components that can be reused. If one needs just the class descriptions, a

reference to the Class Description file will suffice. If one needs the component for

visual display and the complete course path generation, an inclusion of the LQBox

component will suffice. The LQ Engine window has the LQBox embedded in it.

5 Conclusion

This paper attempts to identify the requirements and automate the design of

courseware based on the need of individual learner. Based on the input knowledge

level of the participant as well as the desired output, the LQ requirements are

identified using an iterative methodology. The proposed framework further derives

the design of the courseware by detecting the learning sequence for the selected LQs.

This naturally will make this adaptive system more acceptable to the participants.

The focus of developing the prototype is to lay a foundation for further work in

future. The heart of the system is complete and the engine satisfies the requirements

of reusability. The prototype offers one of the possible minimal solutions that exist.

While the learning plan generated is not necessarily an optimal solution from the

perspective of cost or time for learning, it surely is irreducible and no redundancy

exists. The solution hence satisfies our primary objective.

References

1. Chen, B. : Challenges in Experimental Research Conducted in a Fully Web-based Distance

Learning Environment : Proceedings of World Conference on Educational Multimedia,

Hypermedia and Telecommunications (2006), pp. 1778-1783.

2. Mayer, R. : The promise of multimedia learning: Using the same instructional design

methods across different media. Learning and instruction, Vol. 13, (2003), pp. 125-139.

3. Kurbalija, J.; Dincic, D.; Slavik, H. : Interactive hypertext in e-learning: a case study

asynchronous learning in the online classroom : Proceedings of the 5th International

Conference on Information Technology Based Higher Education and Training, (2004), pp

15-20.

4. Cockerton T., Shimell R. : Evaluation of a hypermedia document as a learning tool : Journal

of Computer Assisted Learning, Vol. 13, No. 2 (1997).

5. J. R. Laleuf, A. M. Spalter : A Component Repository for Learning Objects: A Progress

Report : First ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL'01), pp. 33-40.

6. IEEE LTSC : Learning Technology Systems Architecture (LTSA), Draft 9,. URL:

http://www.edutool.com/ltsa (2001).

7. Munro John : Facilitating Effective Learning and Teaching : Proc. of Technology Colleges

Trust Online Conference (2002).

URL:www.cybertext.net.au/tct2002/keynote/printable/munro.htm

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

118

8. Ray S., Chaki N., Dasgupta R. : Design of an adaptive web-based courseware : Proc. of

IASTED International Conference on Intelligent Systems & Control (ISC 2004), Honolulu,

Hawaii, USA, (2004).

9. Taber K. S. : Development of Student Understanding: A Case Study of Stability and Lability

in Cognitive Structure, Research in Science & Technological Education, Vol 13 (1), (1995)

pp.87-97.

10. Vassileva J., Deters R. : Dynamic Courseware Generation on the WWW : British Journal of

Educational Technology, Vol. 29, No.1 (1998).

11. Ehsan Sheybani, Gita Javidi. : Interactive Multimedia And Distance Learning : Proc. of the

34th ASEE/IEEE Frontiers in Education Conference : USA. (2004), pp. SID-1 - SID-3.

12. Zhang George Guanon : Computer Based Knowledge System in the USPTO United States

Patent Office, September, 2004. URL: http://www.uspto.gov/Patents/United States Patent

6,795,815.htm

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

119

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

120

Transparency, Simplicity, and Trusted Software

Daniel E. Cooke, J. Nelson Rushton, and Brad Nemanich

Department of Computer Science
Texas Tech University

Abstract. In addition to generating correct codes from specifications, trusted
system specifications need to be transparent.

Introduction.
Many Computer Scientists seem to have adopted the view that complicated tools

are needed to solve complicated problems. Although there are advantages to the

current problem-solving environments there remains a need to develop simpler tools,

especially simpler languages. The SequenceL language has been developed with the

goal of eliminating the need to focus on unnecessary technical details and

complexities that distract one from the problem to be solved. [C96, CR] It is

becoming increasingly clear that the complex tools we use today will not meet future

demands of many critical applications.

Two quotes seem to sum up opposing views on computer languages.

According to S.P. Jones, one of the developers of Haskell, "Any language large

enough to be useful is dauntingly complex." [Jones] On the other side we have C.A.R.

Hoare’s quote from his Turing Award lecture, 27 years ago, “The price of reliability

is the pursuit of the utmost simplicity.” [Hoare] It is interesting that Hoare’s view

was probably the predominating view when he stated it. In the intervening years we

have seen the growth in Object-Oriented Programming and dauntingly complicated

desktop systems, leading to Jones’ view at the turn of the 21
st

century. We posit that

Jones’ view is widely held today. Much of the Computer Science community is

vested in research to help organize the complexity of the dauntingly complex

languages we use to organize the complexity of problem solving.

We claim the troubles with existing tools are twofold. First is the gap or

distance between the mental model of a user and the requirements, and second is the

distance or gap between the requirements and the executable code. Currently, the gulf

between requirements and code is responsible for between 35% and 75% of software

flaws, tending toward the higher number: [Jones2000], [Grady87]. However, in the

long run the gulf between one’s intuition and requirements may be more important,

since this is the step that can't be certified by explicit deduction.

The work we have focused on over the past 20 years remains inspired by

Hoare’s view. We believe that the increasingly complex nature of current and

presumably future tools stand in opposition to the solution of complicated problems,

and that only through the development and use of exceedingly simple tools will we be

able to solve, rapidly and dependably, the complicated problems we will see in the

future. This paper gives examples that make our view plausible, by showing where

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

121

Transparency, Simplicity, and Trusted Software

SequenceL enables substantial simplifications over currently used techniques. It

should be noted that these examples are extracted from SequenceL as it is being

applied to prototype critical Guidance, Navigation, and Control Systems at NASA

Johnson Space Center.

If we accept Hoare’s claim – that simplicity is the key to the development of
trusted software – then what is the key to simplicity? We believe that languages must
be small and concise. SequenceL, the language we have developed, can be reduced to
roughly 9 grammar rules. You can carry the language around in your head – you
don’t need reference materials that impede problem solution. You don’t need to
remember how operators specific to the language work.

Equally important is that the semantics of the language be very simple.
Apart from implementing operators that have intuitive meanings, SequenceL
possesses two simple computational laws (the Consume-Simplify-Produce and the
Normalize-Transpose). All structures in the languages are producible simply from
these semantics. [CR] Not only does this simplify the development of assurances
concerning the synthesis of codes, there are no operators that require special
definitions (like the maps and zips of Haskell). [HJW92] All the operators are
intuitive. This leads to a major requirement for trusted software development – that
problem solutions are transparent – that a problem solution can be seen, in a glance, to
do what you want.

Motivation
In the past, human-rated NASA missions have been heavily scripted,

meaning that hardware and software systems are unlikely to be capable of dealing

with many unanticipated events. This condition further means that the primary

responsibility for handling unforeseen situations resides with humans, who are either

onboard the spacecraft or in mission control.

Missions currently being planned by NASA’s Exploration Systems Mission

Directorate will not be pre-scripted. These missions will be less predictable than past

missions and some will be of much longer duration and involve considerably greater

distances. Minute-by-minute communication between Mars and Mission Control will

be physically impossible given roundtrip communication delays ranging from six to

forty-one minutes, not including a solar conjunction involving Mars and Earth during

which communication may be impossible for up to three weeks.

Hardware developed for future missions is likely to be of greater capability
to take advantage of the increased functionality software can serve. Thus, systems
will be more adaptable for varied mission scenarios. An ability to rapidly and
dependably develop and modify software could provide NASA the means to alter
system capabilities on the fly. Following current practices, software modifications to
space-based systems can take in the months or years to make. To modify capabilities
between and during missions, revolutionary software development approaches are
needed. [CBLG06] New approaches that, in the tens of minutes, can result in
effective and dependable modifications are needed. The SequenceL research is

focused directly on these challenges.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

122

Transparency, Simplicity, and Trusted Software

Immediately Trusted Systems
NASA will require immediately trustable systems: system components that

can be specified and generated in a matter of minutes. To meet these demands of

future NASA missions, there are two gulfs that must be bridged. The first gulf is the

long studied gulf between specifications and the programs intended to satisfy them.

We are making novel strides in bridging this gulf through auto-coding. Clearly, auto-

coding is not a new idea, but our language tends to make certifications about the auto-

coder easier. First, SequenceL itself is a very small language, consisting of roughly 9

BNF rules. Secondly, the two computational laws that comprise the semantics of

SequenceL are very simple. We have recently shown that once these two simple laws

are defined, all remaining definitions can be implemented simply in terms of them.

The laws are the Consume-Simplify-Produce and the Normalize-Transpose (CSP-NT)

and are presented in detail in other papers. [CR] Theoretically, CSP by itself would

be sufficient for Turing Completeness; but the addition of NT simplifies the

encodings of the language itself and the codes written in it, by allowing us to

frequently avoid the use of the recursion sledgehammer to swat the iteration fly.

Recursion is generally more complex, semantically and intuitively, than its special

cases such as iteration and NT [Dijkstra1990].

The second gulf that must be bridged to meet the demands of immediately

trusted systems is transparency, which means that one can determine what is

specified, at a glance or with minimal effort. Bridging the gulf between the

specification and the code generated, addresses verification. Bridging the gulf

between the specification and the user’s intentions, addresses validation.

Transparency is the key to this concern since it addresses the amount of effort that

goes into ascertaining what a specification means. Consider the following examples

of specifying Jacobi Iteration. The actual specification for one iteration is:

µj,k’ = (µj+1,k + µj-1,k + µj,k+1 + µj,k-1)/4 – ((�j,k * �2)/4)

when neither j or k subscript the first or last row or the first or last column

where µ and � are input matrices for each iteration and µ’ serves as µ in the next

iteration. Haskell code appears below for the algorithm:

jacobi a delta =

map (\i -> [jacobi_helper a delta i j| j<-[0..(length (a!!i))-1]], [0..(length a)-1])

jacobi_helper a delta i j

| i==0 || j==0 || (length a)-1 == i || (length (a!!i))-1 == j = a!!i!!j

| otherwise =

(a!!(i+1)!!j + a!!(i-1)!!j + a!!i!!(j+1) + a!!i!!(j-1))/4 - ((a!!i!!j) * delta^2)/4

We claim that most of the effort necessary to see that this code is correct goes into

analysis, not of whether the equation is transcribed correctly, but of the second order

constructs used to traverse the data structure and apply the equation: map, lambda

abstraction, list comprehension, and ellipses, nested four levels deep.

Normally specified equations like the one above are nicely – even

transparently – stated in Matlab. Unfortunately, when it comes to Jacobi, the

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

123

Transparency, Simplicity, and Trusted Software

constraints on the subscripts require one to dip into the procedural language

accompanying Matlab:

function res = ji(a, b, delta)

for i=1:length(a)

for j=1:length(a(1,:))

if (i==1 | i==length(a) | j==1 | j==length(a(1,:)))

res(i,j) = a(i,j);

else

res(i,j) = (a(i-1,j) + a(i+1,j) + a(i,j-1) + a(i,j+1))/4;

end

res(i,j) = res(i,j) - (b(i,j)*delta^2/4);

end

Having a predefined, reusable function or object has drawbacks as well since it is one

of thousands, which both the author and reader of the code must remember.

Furthermore, there may be a particular approach the designer wishes to deploy for the

computation. Finally, however vast the library, novel problems will arise which

require use of the core language features.

In SequenceL one can see that the solution maps directly to the specifying

equation with minimal effort:

jacobi J,K(matrix a,b, scalar delta) :=

(a(J+1,K) + a(J-1,K) + a(J,K+1) + a(J,K -1)) / 4 - ((b * delta^2)/4)

when not((J =1 or size(a)=J) or (K=1or size(a)=K)) else a(J,K)

Notice all of the operators are intuitive and no specialized functions need to be

known. Consequently, the SequenceL function aligns well to the specifying equation.

Furthermore, a natural language definition tends to spring from the SequenceL

definition: The (j,k)th element of the resulting matrix is the average of its

surrounding elements below, above, to the right, and to the left, when j is not the first

or last row and k is not the first or last column.

Principles of SequenceL
One of the ways we are currently trying to improve upon the transparency of

SequenceL is by providing principles one can follow in translating formulae into

SequenceL specifications without having to know anything about the underlying

computational laws. The whole point of transparency is this: can you trust a

specification – even if it generates correct code – if you have to do lots of work to see

that the specification states what you want computed?

To achieve better transparency there is a need to address information hiding

– similar to the principles David Parnas developed decades ago. Essentially, Parnas’

principles concern compartmentalization – that the user of an operation have no

knowledge of its implementation and that the implementer of an operation have no

knowledge of particular applications. [Parnas] In SequenceL, the CSP-NT are

abstract semantics that enable all of the non-primitive SequenceL constructs. There

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

124

Transparency, Simplicity, and Trusted Software

are no specialized operators requiring specialized knowledge about the operator’s

semantics. The only semantics the SequenceL user would need to know are the CSP-

NT. By developing principles for using SequenceL, our goal is to provide a shield for

the user – so that he/she need not know semantics at all.

Initial efforts have focused on equation-based specifications like the Jacobi

example above. We have explored equations beyond numerical computations to

include ones from set-builder notation, denotational semantic equations, etc. In all

cases explored so far, one can simply translate the equation directly into SequenceL.

Examples from set builder notation follow:

in(scalar X, vector S) := or(X = S(I))

{Or results in an existential operator based on I}

subset(vectors S1,S2) := and(in(S1(I),S2))

{And results in an existential operator based on I }

intersection(vectors S1,S2) := {X when in(X,S1) and in(X,S2)}

The Jacobi iteration example, given above, uses free variables J and K to

implement a solution. However, in certain cases the encodings may be further

simplified. An n-ary function f acts pointwise on its i'th parameter x if every

occurrence of x in the definition of f either has no free variable subscripts, or is

subscripted by free variables identical to those subscripting f on the left hand side. If a

function acts pointwise on all its inputs, free variables may simply be erased from

both sides of the equation defining a function, and SequenceL's NT semantic will

restore them automatically. For example, matrix addition may be defined in

SequenceL as

matplusI,J(matrix A, matrix B) := A(I,J) + B(I,J)

or, equivalently through NT, as

matplus(matrix A, matrix B) := A + B

Another principle for using SequenceL involves a determination of what varies and

what does not vary in a specification. This principle often results in summarizing

equations. Consider the following example to compute Euler’s number:

Notice that the numerator remains constant and the denominator varies. In

SequenceL, the n
th

approximation of e is given as:

E(scalar N) := sum(1/fact([0,…,N]))

e =
1

n!n= 0

�

� =
1

0!
+
1

1!
+
1

2!
+
1

3!
+ ...

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

125

Transparency, Simplicity, and Trusted Software

Note, that translators for SequenceL execute these specifications and some even

generate code. Finally, we have found that in the majority of cases, iteration and

recursion is used to break apart and put together nonscalar structures. In general,

when using SequenceL this assembly/disassembly can be ignored and one can focus

strictly on the basic computation.

Natural Language.
We have only recently initiated studies of the relationship between Natural

Language specifications and SequenceL. We are focused on requirements for abort

systems we are developing in collaboration with NASA Johnson Space Center’s

Guidance, Navigation, and Control engineers. We recently completed the Shuttle

Abort Flight Management System in SequenceL. The original system prototype took

six months of full-time effort for one GN&C engineer. Once the system was

validated, the team turned over the requirements document to General Dynamics to

develop the flight-certified code, which took roughly two years to complete and cost

approximately $8 million.

Working mainly with the requirements documents, and with minimal contact with

the JSC GN&C engineers, SequenceL specifiers developed an understanding of the

requirements and elaborated, executed, and validated them in SequenceL with six

weeks of one person's full-time effort. The GN&C engineers agreed that, although not

identical, our efforts and theirs were comparable in difficulty and scope. Thus, in our

initial experiment, we completed the requirements review and produced a working

prototype in SequenceL in one-fourth the time it took the GN&C engineers for the

original SAFM development.

The function Sort TAL sites is one of the most complicated SAFM components. It

arranges the top four sites according to pre-defined priorities. TAL stands for

Transatlantic Abort Landing. These are targeted landing options available in the

event of an abort during the ascent phase. What follows are the executable

requirements in SequenceL. After each component of the requirement, we have

reversed engineered a Natural Language (NL) requirement:

SORT_TAL – component 1

preferred(vector B, A, scalar Prime) :=

B when and([B:subscript = 4,B:available,B:valid]) else

[] when and([A:subscript = 4,A:available,A:valid]) else

B when and([B:location = Prime,B:available,B:valid]) else

[] when and([A:location = Prime,A:available,A:valid]) else

B when and([B:throttle < A:throttle,B:available,B:valid]) else

B when and([B:throttle < A:throttle,B:available]) else

B when A:subscript > B:subscript

Natural Language:

1. Site B is preferred to site A if B is the 4th site and is available and is

valid, however Site A overrides B if it is the 4th site and is available and

is valid; otherwise

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

126

Transparency, Simplicity, and Trusted Software

2. B is preferred to A if B is the prime site and is available and is valid,

however Site A overrides B if it is the prime site and is available and is

valid; otherwise

3. B is preferred if B’s throttle value is less than A’s throttle value and B is

available and is valid; otherwise

4. B is preferred if B’s throttle value is less than A’s throttle value and B is

available; otherwise

5. B is preferred if A was entered after B in the list of sites

Only after the Natural Language specification was produced from the SequenceL did

it become apparent that conditions 3 and 4 above, can be collapsed with the weaker

condition (4).

SORT_TAL – component 2

sort_tals(matrix [Site|Sites], scalar Prime) :=

Site when size([Site|Sites]) = 1 else

appends(sort_tals(preferred(Sites,Site,Prime),Prime), [Site],

sort_tals(complement([Sites,preferred(Sites,Site,Prime)]),Prime))

Natural Language: Sort a set of sites choosing the first site S and returning it if it is

the only site, otherwise append the following results:

1. The sorted list of all those sites preferred compared to S;

2. Site S; and

3. The sorted list of all the sites not preferred when compared to S.

SORT_TAL – component 3

geolocI,J(matrix Sites) := Sites(I) when Sites(I):loc = Sites(J):loc and I <> J

Natural Language: Return any I
th

site when there is a J
th

site such that I�J and the

location of site I is the same as the location of site J.

SORT_TAL – component 4

stals(matrix Sites, scalar Prime) :=

sort_tals(Sites,Prime) when geoloc(Sites) = empty else

complement(sort_tals(Sites,Prime), geoloc(sort_tals(Sites,Prime))(2)) ++

[geoloc(sort_tals(Sites,Prime))(2)]

Natural Language: Sort all TAL sites when there are no co-located sites otherwise

add the least preferred co-located site to the end of the sorted list of all the other sites

The requirements for the Sort TAL sites function were originally stated by

NASA engineers in natural language, quite different from that derived from the

SequenceL, and conforming more to a procedural paradigm. We conjecture this was

because they were thinking already in terms of the implementation language, in this

case C. We are engaged now in the exercise of extracting natural language

specifications from the SequenceL to identify patterns and a restricted grammar for

producing SequenceL from Natural Language Specifications and vice versa.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

127

Transparency, Simplicity, and Trusted Software

Summary and Conclusions
The goal of the SequenceL effort is to achieve transparency in specification and truth

preserving synthesis of procedural codes from those specifications. 1 Key to the

synthesis concern is the fact that SequenceL’s semantics are simple and based on only

two computational laws.

Key to transparency is the development of a small set of principles to guide
the designer when working with formal and natural languages. Systems that are more
immediately trustworthy must produce correct codes from transparent specifications.
In previous papers SequenceL has been compared to a number of languages including
FP [B78], Gamma [BL93], and NESL [B96]. SequenceL has been used to prototype
significant NASA GN&C Systems including SAFM, the ORION Onboard Abort
Executive, and the Shuttle’s Ascent Predictor Software.

References
[B78] John W. Backus: Can Programming Be Liberated From the von Neumann Style? A
Functional Style and its Algebra of Programs. Commun. ACM 21(8): 613-641 (1978)

[BL93] Jean-Pierre Banatre and Daniel Le Metayer, “Programming by Multiset
Transformation, January, 1993, Vol. 36, No. 1. Communications of the ACM, pp. 98-111.

[B96] Guy Blelloch, “Programming Parallel Algorithms,” March, 1996, Vol. 39, No. 3.
Communications of the ACM, pp. 98-111.

[C96] Daniel E. Cooke, "An Introduction to SEQUENCEL: A Language to Experiment with
Nonscalar Constructs," Software Practice and Experience, Vol. 26 (11) (November, 1996),
pp. 1205-1246.

[CBLG06] Daniel E. Cooke, Matt Barry, Michael Lowry. and Cordell Green "NASA's
Exploration Agenda and Capability Engineering," COMPUTER (January 2006) Vol. 39 No.
1, pp. 63-73.

[CR] Daniel E. Cooke and J. Nelson Rushton, “Normalize, Transpose, and Distribute: A Basis
for the Decomposition and Parallel Evaluation of Nonscalars,” in press ACM Transaction on
Programming Languages and Systems.

[Dijkstra 1990] Dikjstra, Edsger and Scholten, Carel. Predicate calculus and program
semantics. Springer-Verlag New York, Inc. 1990.

[Grady87] Grady, Robert B. 1987. "Measuring and Managing Software Maintenance.: IEEE
Software 4, no. 9 (September): 34-45.

[Hoare] C.A.R. Hoare, ``The Emperor's Old Clothes.'' Communications of the ACM, Vol. 24,
No. 2, February 1981, pp. 75-83.

[HJW92] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, et. al.: Report on the
Programming Language Haskell, A Non-strict, Purely Functional Language. SIGPLAN
Notices 27(5): R1-R164 (1992)

[Jones] “Wearing the hair shirt A retrospective on Haskell,” research.microsoft.com/
~simonpj/papers/ haskell-retrospective/HaskellRetrospective.pdf.

[Jones2000] Jones. Capers. 2000. Software Assessments, Benchmarks, and Best Practices.
Reading, MA: Addison-Wesley.

[Parnas] Parnas, D.L. "On the Criteria To Be Used in Decomposing Systems Into Modules"
Communications of the ACM, Vol. 15, No. 12, pp. 1053-1058, December, 1972.

Support from NASA: NNG05GP48G, NNG06GJ14G, and NNG06GJ14G.

1 To support, respectively, validation and verification.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

128

Towards Combining Ontologies and Model Weaving

for the Evolution of Requirements Models

Allyson M. Hoss and Doris L. Carver
Department of Computer Science

Louisiana State University

Baton Rouge, LA 70803, USA

ahoss1@lsu.edu, dcarver@lsu.edu

Abstract. Software change resulting from new requirements, environmental

modifications, and error detection creates numerous challenges for the

maintenance of software products. While many software evolution strategies

focus on code-to-modeling language analysis, few address software evolution at

higher abstraction levels. Most lack the flexibility to incorporate multiple

modeling languages. Not many consider the integration and reuse of domain

knowledge with design knowledge. We address these challenges by combining

ontologies and model weaving to assist in software evolution of abstract

artifacts.

Keywords: abstract artifact, design knowledge, domain knowledge, modeling

languages, knowledge reuse, software evolution.

1 Introduction

Generally speaking, software evolution refers to changes a software product

undergoes to meet changes in its environment and/or requirements. Modifications

include adding, deleting, and/or modifying artifacts such as requirements, design,

source code, and test cases. We address three challenges in software evolution that

receive little attention from current research: evolving high-level artifacts such as

requirements and design models; reusing software design and domain knowledge;

and, integrating multiple software modeling languages during software evolution.

Software evolution techniques include ad-hoc copy-and-modify, refactoring,

visualization, generative, and aspect-oriented approaches. Most of these approaches

address primarily source code changes. One of the current challenges in software

evolution is the need to incorporate techniques to evolve the more abstract artifacts of

software development [1]. Additionally, the few software evolution approaches that

do abstract above the code level are often “far too detailed to be helpful for talking

about the design with someone else…working with too detailed a model is a trap” [2].

A second limitation common in software evolution techniques today is their single

language focus. Few consider the plethora of modeling languages ranging from

general-purpose languages to domain specific languages. It is not uncommon for

software applications to incorporate several modeling languages, especially as a result

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

129

of evolving technologies. A “crucial, and largely neglected, aspect of software

evolution research is the need to deal with multiple languages” [1].

Lastly, there is a lack of software design and domain knowledge reuse in most

software evolution approaches. A recent description of model evolution activities

includes change propagation, impact analysis, inconsistency management, model

refactoring, code generation, reverse engineering, version control, and traceability

management [3]. Missing from this list is the integration and reuse of software design

and domain knowledge. And yet, capturing both the experience of software design

engineers and domain knowledge and then reusing such experience and knowledge

would save time, effort, and cost of future development.

In this work, we organize software design knowledge into three types: design

representation, design rationale, and design implementation. Design representation

includes abstract descriptions of what a software system should do and how it should

be done. Design representation includes software artifacts such as requirements, use

cases, patterns, and design diagrams. Design rationale “is the explicit listing of

decisions made during a design process and the reasons why those decisions were

made” [4]. Design implementation includes the platform specific descriptions of the

design representations (such as code and test plans). Considerable research focuses

on knowledge reuse in design rationale and design implementation. While some

knowledge reuse exists in design representation, such as software patterns, reuse of

knowledge related to the syntactic and semantic rules governing the relationships

among sub-structures of abstract design artifacts is practically non-existent.

We address the above three challenges in software evolution by combining model

weaving with ontologies to facilitate the reuse of software design and domain

knowledge, and the integration of multiple software modeling languages in the

software evolution of abstract artifacts. Section 2 briefly reviews model weaving and

ontologies. Section 3 introduces our initial steps towards combining model weaving

and ontologies as a promising solution to these challenges. Section 4 reviews related

literature. Section 5 concludes with the next steps in our research.

2 Model Weaving and Ontologies

Model weaving is a form of model transformation. Stated simply, model

transformation involves transforming a source model to a target model. Model

transformation is at the heart of a variety of techniques including forward engineering

from models to code, refinement and refactoring of models, transformation between

models, and reverse engineering from code to models. The OMG’s Model Driven

Architecture (MDA) [5] defines guidelines on model definition and transformation.

Model weaving utilizes a weaving model that has typed links containing user-defined

semantics to map between model elements [6]. Fig. 1 portrays an overview of model

weaving. Weaving links specify the semantic relationships between source and target

models above and beyond the one-to-one element matching of most model

transformation approaches. The weaving model conforms to a predefined weaving

metamodel that defines a variety of mapping capabilities. With model weaving, one

element of a source model can be linked to a set of elements in the target model and

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

130

vice versa. Complex mappings such as n:1, 1:m, and n:m are possible as well as

expressions such as equality, equivalence, non-equivalence, and generality via

metamodel extensions and mapping expressions [7]. The weaving model is

incorporated into a transformation program that performs the actual model

transformation. Creating a weaving model is a semi-automated process in which

many similarities among model elements can be identified automatically but manual

refinement may be necessary.

Model weaving offers three advantages over other model transformation

techniques [6]: links in a weaving model are bi-directional whereas most model

transformation techniques produce unidirectional transformations; transformation

patterns associated with weaving links are more reusable than the structure dependent

coding patterns of most model transformation approaches; and changes to source and

target metamodels propagate through weaving links with fewer modifications to the

weaving metamodel than in other model transformation techniques in which source

and target model changes require changes in the model transformation program.

Utilized for several years in philosophy, linguistics, and artificial intelligence,

ontologies are now a popular knowledge representation model in a variety of software

development areas such as multi-agent systems, natural language processing, and

information retrieval. An ontology consists of hierarchically arranged concepts,

relationships among those concepts, and rules that govern those relationships. While

no standard definition of ontology exists, a commonly accepted definition describes

an ontology as a formal, explicit specification of a shared conceptualization [8], [9].

An ontology is, therefore, an abstract model of some area of knowledge used to share

information regarding that knowledge area. It contains explicitly defined and

generally understood concepts and constraints that are machine understandable.

An example of an ontology that we utilize in our research is the Ontology for

Software Specification and Design (OSSD) Model [10]. A partial view of this model

is given in Fig. 2. The OSSD model is an ontology of software design and

specification knowledge that consists of hierarchically arranged software

MetametaModel

ModelA ModelB

conforms to weaving input

B-to-A Transformation

A-to-B Transformation

transforms

MetaModelA MetaModelBWeaving

MetaModel

Weaving Model
ModelA links ModelB

a.element1 equivalent b.element1

a.element2 nested b.element2

a.element3 concat b.element3

Fig. 1. Model weaving.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

131

development concepts, relationships, and rules. The OSSD Model integrates the

structural and relationship knowledge acquired from multiple views of a software

design. The graphical notations of the OSSD Model include: rounded rectangles

representing classes interconnected via solid lines implying “Is-a” relations; and

dashed lines representing properties that describe additional details regarding classes

and conceptually link related classes. The OSSD Model utilizes ontological

reasoning via rules associated with its properties to assist with both syntactic and

semantic error detection among multiple design views.

In Section 3, we present a high-level view of our approach towards combining

ontologies and model weaving to assist with evolving abstract artifacts.

3 Our Approach

Our approach facilitates the evolution of abstract software artifacts such as

requirements models, encourages domain knowledge and software design knowledge

reuse, and integrates software models specified using the same or different software

modeling languages. Conceptually, we weave together ontological models

representing both software design knowledge and domain knowledge as shown in Fig.

3. The Generic Design Model consists of properties, or rules, governing the

relationships among software requirements and design constructs. The Generic

Domain Model focuses on facts and rules within a given domain. We utilize the

depends

on

Association

Note: unmarked
properties are
implied "has"

State

Non-assoc.

Compos.
c a

u
s e

s

Role

performed by

Obj.Attrib

To.Obj From.Obj

sends msg to

Event

sends msg to

co
ntain

s

Relation

Rel.Attrib

Attribute

Agent

inputs

outputs

Goal

Entity

Object

Statebased

Behavior
General.

Construct

Transition

Constraint

Plan

co
n

ta
i n

s

Fig. 2. Partial view of the OSSD Model.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

132

OSSD Model as the Generic Design Model and are defining weaving models (Design

WMs) to integrate the metamodels of other modeling languages with the Generic

Design Model. We are developing the Generic Domain Model and associated

weaving models (Domain WMs) to integrate a variety of domain ontologies. We are

developing the Design and Domain Weaving Model to integrate generic software

domain and design knowledge. Our approach facilitates knowledge reuse by applying

knowledge acquired during processing of one application to subsequent applications

via our generic ontological models. We utilize the ontological models shown in Fig.

3 to store initial requirements and design models that are later accessed during the

evolution of those models thereby facilitating knowledge reuse and multi-language

integration.

As a demonstration of our approach, we consider the evolution of an airport

security software system to incorporate new requirements such as those discussed in

the case study presented for analysis at the 14
th

 Monterey Workshop [11]. In our

approach, the initial requirements for the airport security system, possibly specified

using a modeling language such as the Unified Modeling Language (UML) [12],

would be transformed into two ontological representations, one for design knowledge

and one for domain knowledge as shown in Fig. 4 via the Airport Security Design and

Airport Security Ontology respectively. Knowledge from these two ontologies would

be woven into instances of the Generic Models. New requirements such as a ban on

carrying liquids in passenger luggage would be specified in UML or some other

modeling language and woven into the existing ontological models for the airport

security system. Our approach enables the creation and reuse of rules, such as rule21

that controls the relationship between domain constructs “a” and “b” or rule32 that

controls the relationship between design constructs “d” and “e”. Now, suppose that

rule21 concerns the screening of passenger luggage (represented by node a) for guns

(represented by node b) and a new requirement is created to add liquids (represented

Design
&

Domain
WM

Generic
Design Model

Domain
Specific
Ontologies

Design &
Specification
Metamodels

Ontology

A

Ontology

B

Metamodel

Z

Metamodel

Y

Metamodel

X
Ontology

C

Generic
Domain Model

weaving

DesignWM-X

DesignWM-Z

DesignWM-Y

DomainWM-A

DomainWM-B

DomainWM-C

Fig. 3. Weaving Domain and Design Knowledge.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

133

by node c) to the screening. A new domain rule would be added between nodes a and

c. This new rule would be woven into the design model and included as a new rule

affecting passengers (represented by node d) and their luggage (represented by node

e). The appropriate DesignWM would then be utilized to generate the final product as

a model containing the enhanced requirements specified in either the original or new

modeling language.

4 Related Research

Software evolution is a broad research area. We narrow our research review to the

evolution of abstract software artifacts and specifically those incorporating

ontologies, model weaving, or knowledge reuse.

Several ontological solutions are emerging to address software evolution. One

approach assists software maintenance processes by using ontologies and automated

reasoning, via description logics, to represent heterogeneous software maintenance

artifacts [13]. Their work creates separate ontologies for source code and

documentation (such as requirements and design) and maps between them providing

query and reasoning capabilities. Their work provides considerable analysis

capabilities but does not produce evolved artifacts as our approach does. Much of the

related work utilizing ontologies in software maintenance focuses on representing

software maintenance knowledge. For example, a software maintenance ontology [14]

provides a unifying framework for software evolution tool interaction. This ontology

consists of high-level maintenance concepts such as software system, modification

processes, computer science skills, organizational structure, and application specific

knowledge. Their software system components include artifacts such as requirements

specification and design specification, while our ontology addresses software

development artifacts at a more detailed level, such as object, agents, behavior, and

goals.

Initial
Requirements

rule21

a b

Domain Model
rule32

e
d

Design Model

c

domain link design

rule21 equals rule32 Airport
Security
Design

New
Requirements

 agents
 beliefs
goals

Enhanced
Requirements

Enhanced
Requirements

 agents
 beliefs
goals

Airport
Security
Ontology

DesignWM

Design
&

Domain
WM

DomainWM

Fig. 4. Our Approach.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

134

Current software reuse research focuses on representing and retrieving software

artifacts such as code, patterns, components, and experience. While patterns share

design knowledge they do not facilitate reasoning with that knowledge nor address

domain knowledge reuse. The KOntoR approach [15] provides both domain

knowledge reuse and reasoning capabilities by storing software artifacts in a metadata

repository and utilizing ontologies to represent both software design and domain

knowledge. While the KOntoR approach also processes software artifacts specified

in variety of formats, its reuse does not incorporate rule knowledge concerning the

relationships among software design constructs. REBUILDER UML [16] facilitates

reuse of software design knowledge utilizing ontologies and Case-Based Reasoning

(CBR). This tool combines UML class diagrams with domain ontologies to provide

users with a software design knowledge library of problem, solution, and outcome

cases. It differs from our approach because it focuses on one software modeling

language, knowledge reuse only at the object or class diagram level, and uses

ontologies to represent only domain knowledge.

5 Future Work

We presented our initial steps towards combining ontologies with model weaving to

facilitate the evolution of abstract software artifacts such as requirements models,

encourage domain knowledge and software design knowledge reuse, and integrate

software models specified using the same or different software modeling languages.

These steps represent a part of our ongoing work to implement a system called the

Evolution Weaver

References

1. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri, M.,

Challenges in Software Evolution, International Workshop on Principles of Software

Evolution, Portugal (2005)

2. Berrisford, G., Why IT Veterans are Sceptical about MDA, 2nd European Workshop on

Model Driven Architecture (MDA), UK (2004) 125-135

3. Mens, T., Van Der Straeten, R., On the Use of Formal Techniques to Support Model

Evolution, Technical Report TR-CCTC/DI-35, Departamento Informatica, Universidade do

Minho, Portugal (2005) 67-98

4. Jarczyk, A., Loeffler, P., Shipman, I.F., Design Rationale for Software Engineering: A

Survey, 25th Annual IEEE Computer Society Hawaii Conference on System Sciences (1992)

577-586

5. Object Management Group, Model Driven Architecture, V1.0.1 (2003)

6. Del Fabro, M., Jouault, F., Model Transformation and Weaving in the AMMA Platform,

Generative and Transformational Techniques in Software Engineering, Portugal (2005) 71-77

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

135

7. Del Fabro, M., Bezivin, J., Valduriez, P., Weaving Models with the Eclipse AMW Plugin,

Eclipse Modeling Symposium, Eclipse Summit Europe 2006, Esslingen, Germany (2006)

8. Gruber, T., A Translation Approach to Portable Ontology Specifications, Knowledge

Systems Laboratory Technical Report KSL 92-71, Stanford University (1992) Revised (1993)

9. Borst, W., Construction of Engineering Ontologies, Ph.D Dissertation, University of

Tweenty, Enschede (1997)

10. Hoss, A., Carver, D., Ontological Approach to Improving Design Quality, IEEE Aerospace

Conference, MT (2006)

11. The 14th Monterey Workshop, Case Study: Air Traveling Requirements Updated,

Workshop on Innovations for Requirements Analysis: From Stakeholders Needs to Formal

Designs, CA (2007)

12. Object Management Group, Unified Modeling Language (UML) 2.0 (2003)

13. Witte, R., Zhang, Y, Rilling, J., Empowering Software Maintainers with Semantic Web

Technologies, to appear at the 4th European Semantic Web Conference, Austria (2007)

14. Anquetil, N., de Oliveira, K., Dias, M., Software Maintenance Ontology, Ontologies for

Software Engineering and Software Technology, Springer Berlin Heidelberg New York (2006)

15. Happel, H., Korthaus, A., Seedorf, S., Tomczyk, P., KOntoR: An Ontology-enabled

Approach to Software Reuse, 18th International Conference on Software Engineering and

Knowledge Engineering, CA, Jul. (2006) 329-344

16. Gomes, P., Leitao, A., A Tool for Management and Reuse of Software Design Knowledge,

15th International Conference on Knowledge Engineering and Knowledge Management, Vol.

4248, Lecture Notes in Computer Science (2006) 381-388

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

136

Text Classification and Machine Learning Support for

Requirements Analysis Using Blogs

Douglas S. Lange

Space and Naval Warfare Systems Center

San Diego, CA 92152

doug.lange@navy.mil

Abstract. Text classification and machine learning technologies are being

investigated for use in supporting knowledge management requirements in

military command centers. Military communities of interest are beginning to

use blogs and related tools for information sharing, providing a comparable

environment to the use of blogs for system requirement discussions. This paper

describes the work in the area being performed under the Personalized Assistant

that Learns program sponsored by the Defense Advanced Research Projects

Agency. Comparisons are then made to how the technology could provide

similar capabilities for a requirements analysis environment.

1 Introduction

The United States Military has adopted several network based communications

mechanisms. During the second Gulf War, chat was an important method of

communications, reducing the need for voice circuits. E-mail protocols have been

used heavily since the early ‘90s for longer more structured messages in the place of

old teletype methods. Now, blogs and wikis have come into use for knowledge

sharing purposes [1].

The U.S. Strategic Command has developed and uses heavily a capability that can

best be described as a hybrid of wikis and blogs. The Strategic Knowledge Integration

Web (SKIWeb) allows users to post information about key events, and allows other

users to add comments and edit the information. Events can be linked to other events,

and lists of events are used to provide key information to various communities of

interest [2]. While SKIWeb is structured differently than most blogging capabilities,

the information within it can, with small transformations, be represented as being

structured exactly like a collection of blogs.

With sponsorship by the Defense Advanced Research Projects Agency (DARPA),

the Space and Naval Warfare Systems Center (SSC) along with SRI International is

working to transition machine learning technology into both SKIWeb and a blogging

capability being developed for the U.S. Navy’s Composeable FORCEnet (CFn). It is

envisioned that the learning technology can not only aid the bloggers, reducing the

labor costs of publishing information, but can also extract information for other

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

137

2 Douglas S. Lange

purposes. It is this second feature that is most closely aligned with the goal of

extracting software requirements from blogs.

2 PAL Blogs

Machine learning from the DARPA Personalized Assistant that Learns (PAL)

program is being used in several ways in conjunction with blogs. These approaches

will help both those who publish information on blogs and those who subscribe to

receive the information over Really Simple Syndication (RSS) feeds. Figure 1 depicts

the CFn PAL Blog design.

Fig. 1 PAL Blog

2.1 Learning on the Publishing Side

Two PAL technologies are being applied to the publishing side in the CFn capability.

The first is text classification. Various learning techniques can be applied to text to

help map the topics found in a corpus. Various algorithms can be used [3] and the

selection can depend on the characteristics of the text, and the mode by which the

classifier is to be trained and used.

Text classifiers occupy the Learning module in Fig. 1. By subscribing to the blog

of a user, text classifiers can determine what topics the user writes about. If a user

frequently reports the status of aircraft in his/her blog, a model of the writer’s interests

can reflect that. Further, through the use of intelligent search and indexing that

employs the same topic mapping capabilities, PAL may find new email, documents,

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

138

Text Classification and Machine Learning Support for Requirements Analysis Using

Blogs 3

chat, or other information sources that have new information on aircraft status and

suggest to the user that the information be added to the blog. In Section 3, it will be

argued that this capability can be useful in defining system or software requirements

from blogs.

A second technology that is being utilized for the PAL Blog provides task learning

[4]. Another approach to helping the user publish is for PAL to learn and generalize

common tasks for the user. If the user frequently gets email about the status of

aircraft, he or she may typically choose to do additional research before publishing

the results. Perhaps a database of parts needs to be queried and a decision aid to

calculate delivery times must be run. The PAL task learning technology allows a user

to teach PAL that when such email arrives in the future, PAL is to go through those

steps and report the results in a particular manner on the blog, thereby relieving the

user of the need to perform the task. PAL. This technology is not directly applicable

to an effort to use natural language tools such as blogs as requirements sources, but

task learning itself can be a means to requirements gathering by using the task models

that are generated as representative of the capabilities required.

2.2 Learning on the Subscription Side

On the subscription side, the goal of learning is to predict what information the user

would like to see. PAL is being used to observe the reading habits of users and

suggest RSS feeds to subscribe to, and even which entries from a feed to treat with

higher priority. This is being done with text classification methods, mapping of topics,

and even social networking clues such as which bloggers provide more authoritative

information.

2.3 iLink

The third technique being applied to blogging activities is social network analysis.

The iLink capability, developed by SRI International as part of the PAL program,

learns to attribute different levels of expertise based on how subscribers judge the

contributions of publishers. The way iLink is structured, when a user poses a question

through iLink it is distributed to those who are known to have some expertise in the

area. Recipients are able to answer the question or forward it to others who they feel

might know the answer. When answers do come, those who have provided useful

information and those who referred the question to them have their scores raised.

Those who provide poor information or cannot answer have their scores lowered. In

this way, expertise is determined by the quality of information rather than by simple

claims in social network metadata.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

139

4 Douglas S. Lange

3. Applications for Requirements Analysis

If we consider that the text of individual blogs contains information important to the

requirements of a system being developed, then the use of machine learning text

classification tools may provide a means to organize the statements, record arguments

for and against a capability, and even provide some sense of priority.

The text classification that is being done for PAL Blog on the both the publishing

and subscription sides groups blog entries based on the topics being discussed by

finding similarities in the words being used. Entries that are discussing the same

topics may be the essence of a discussion about a particular capability, and perhaps

can be divided into arguments for different ways of providing the capability in

question.

Through social network analysis, as blog entries are analyzed for good requirement

content, judgments made about the quality of the input can be made by engineers and

used to learn the level of authority that should be attributed to individual authors both

through the judgment of the engineers and by the level of agreement with those that

are already judged to be authoritative.

4. Results from Experiments with Blogs

During the summer of 2007, there will be two experiments done in analyzing blogs.

The first will be at the U.S. Strategic Command. Classification of events and the

comments made by bloggers on them will be attempted with operational data. The

second is in a web portal called PlatoonLeader where U.S. Army officers share

information about how to handle particular requirements of leading a platoon. These

comments are not too different than discussions about how a system should be

developed to provide useful capabilities. Both the topic mapping and the authority

scoring tools are being used for this application. Full results from both of these

experiments should be available in September of 2007.

References

1. Seymour, G. and Cowen, M., “A Review of Team Collaboration Tools Used in the Military

and Government”,

www.onr.navy.mil/sci_tech/34/341/docs/cki_review_team_collaboration.doc, Accessed on 6

April 2007.

2. Boland, R., “Network Centricity Requires More than Circuits and Wires”, Signal, Vol. 61,

No. 1, September 2006.

3. Lange, D., “Boot Camp for Cognitive Systems: A Model for Preparing Systems with

Machine Learning For Deployment”, Ph.D. Dissertation, Naval Postgraduate School,

Monterey, CA, March 2007.

4. Conley, K, and Carpenter, J., “Towel: Towards an Intelligent To-Do List”, Technical Report,

SRI International, Menlo Park, CA, 2006.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

140

Requirements Documents and Opportunities for Natural Language
Processing

Barbara Paech1

University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg
paech@informatik.uni-heidelberg.de

Abstract. In this paper it is argued that the application opportunities of natural
language processing to requirements depend strongly on the quality of the
requirements documents. This is illustrated through examples from quality
requirements.

1 Introduction

Natural language processing (NLP) is concerned with NL understanding and NL
generation [3]. This can be applied to text and speech. Depending on the formality of the
text or speech different problems arise and different mechanisms apply. In Requirements
Engineering (RE) typically there is a wide variety of communication and documents
characterized also by a wide range of formality. In order to identify possibilities for NLP
in RE it is therefore important to determine the relevant levels of formality. In this
position paper I propose 4 major levels of formality (section 1). In section 2 I discuss 4
major applications of NLP which help to elicit, document, evaluate and manage RE
information on these 4 levels. This is illustrated by concentrating on an important subset
of requirements, namely quality requirement (QR), which have been the focus of some of
my research during the last years [4,2,1]. I conclude with some remarks on future research
questions.

1 Currently on Sabbatical at University of New South Wales, School of Information Systems,

Technology and Management, Sydney NSW 2052

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

141

2 Requirements Documents

During RE several documents are used to capture information on the features and the
quality of the system to be developed. Often at least two different kinds of documents are
distinguished, namely a more informal one capturing stakeholder wishes which might be
ambiguous, conflicting and imprecise and a formal one capturing the consolidated
requirements which can be used as input for design, testing and management. The former
is sometimes called requirements or early requirements in contrast to specification or late
requirements for the latter.

Table 1: Requirements Information Characteristics

Docu-
ment

Form Syntax Consis-
tency

Ambi-
guity

Description QR example

Wishes Tacit
or
spo-
ken

Natural Incon-
sistent

Implicit
and
explicit

Wishes of
the
stakeholders
in their
heads, some
might not
even be
known to
them

I do not want any
security problems on
airplanes.
I do not want so
much detailed work
for the screening
personnel.

Raw
require-
ments

Spo-
ken
or
writ-
ten

Natural Incon-
sistent

Implicit
and
explicit

Wishes of
the
stakeholders
explicitly
uttered
during RE

We need new ideas
for screening.
The screening should
not make people tired
too much.

Consoli-
dated
require-
ments

Writ-
ten
(Text
or
dia-
gram)

Natural
or
restrict-
ted text

Logi-
cally
con-
sistent

Explicit Wishes of
the
stakeholders
consolidated
so that all
conflicts and
ambiguities
are explicit

We need to screen
for A…L.
After screening for 1
hour the alertness of
the screeners should
be still 80% .

Specifi-
cation

Writ-
ten
(Text
or
dia-
gram)

Natural
or
restrict-
ted

Logi-
cally
con-
sistent
without
conflict

Explicit Agreed,
reliable
input for
design, test
and
management

The system should
screen for A…G.
The system should
only use colors … to
avoid stress for the
screeners.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

142

In the following I propose to distinguish 4 levels according to the following attributes
• Form: tacit, spoken or written
• Syntax: natural, restricted
• Consistency: realizable (that means without conflict), logically consistent (but

may be not realizable), inconsistent (in the sense of not logically consistent)
• Ambiguity: explicit (explicitly mentioning several possible realizations), implicit

These attributes are distinguished because they are important for NLP: NLP can detect
to some degree that there might be tacit knowledge, but it can only process spoken or
written information. Clearly, restricted syntax alleviates NLP. NLP can detect to some
degree logical inconsistencies, but realizability can only be assessed with a lot of domain
knowledge which is typically not available today for NLP tools. Implicit ambiguity
(which is just inherent in NL) makes NL understanding difficult, while explicit ambiguity
is no problem for NLP. Note that in contrast to e.g. [5], I do not treat completeness.
Formal completeness in the sense that e.g. a distinction of cases has to be complete is
comprised by ambiguity, because a missing case would entail an implicit ambiguity.

Table 1 describes the 4 kinds of information and their characteristics. Basically I have
separated the early requirements into whishes – that is information which is mainly in the
head of the stakeholders (but nevertheless the major threshold for stakeholder satisfaction)
- and raw requirements – that is information which is uttered explicitly by the
stakeholders. Furthermore I have separated the late requirements into consolidated
requirements – that is information which is consolidated so that all stakeholders have the
same interpretation of it (as far as this is possible at all between humans), but still might
not agree on it, - and specification – that is information on which all stakeholders have
agreed and which therefore can be used in the development as a reliable basis for design,
test and management. Nowadays a specification could also be part of the system itself,
e.g. in agent or ad-hoc systems where the components explicitly carry their specification
with them to allow its analysis at run-time.

Clearly wishes and raw requirements will always be part of a development project
(assuming that design does not start without anything written down), while it depends on
the effort during RE whether consolidated requirements or a specification are created.

The example QR are related to the workshop case study. The wishes represent ideas of
the stakeholders which might be uttered explicitly or not. The raw requirements make
these wishes explicit, typically in a different form, as stakeholders often do not formulate
their true wishes. In particular, instead of the QR (e.g., no security problems) a specific
functional requirement (e.g., new screening measures) might be given. This transition is
often made not consciously. It can occur on all information levels and rationale for it
should be captured. Consolidation in the area of QR means in particular providing
detailed metrics. So in order to consolidate the 2 raw statements, specific screening

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

143

measures (here symbolized by A…L) and specific metrics for “being tired too much”
have to be provided. Clearly, these statements still might be conflicting. The specification
should provide detailed targets for the design. To detect and solve potential conflicts, each
of the measures A…L has to be investigated to find out whether their screening
individually or in sum invalidates the alertness requirement. In this case it is assumed that
on the one hand the number of the screening measures has to be reduced and on the other
hand specific user interface guidelines are needed to support the alertness when screening
A…G. Clearly, the transition from raw requirements to specification involves a lot of
creativity and it will be the case that to solve conflicts new raw requirements are needed
and consolidated requirements have to be discarded, thus making the consolidation step of
the discarded requirements seemingly superfluous. Still, it is important to first get a clear
understanding of the requirements before conflicts can be detected and resolved.
However, it also means that the consolidation steps and the conflict resolution steps
typically will only be applied to subsets of requirements so that the whole specification is
achieved through an intertwinement of consolidation and conflict resolution.

3 NLP Opportunities

So what can NLP do for RE? I distinguish 4 typical applications
• Inconsistency and Ambiguity Detection (IAD): this can be used to create

consolidated requirements out of raw requirements.
• Translation: this can be used to translate between information in different

syntax. So e.g. natural raw or consolidated requirements could be translated to
restricted use case text or more formal models like state charts. But also from
a restricted syntax (e.g. diagrams or formal languages) natural language syntax
could be generated to make it better understandable for some stakeholders.

• Question-Answering System (QAS): this can be used to elicit more
information on each level. So e.g. given raw requirements the NLP tool can
ask questions to provoke the stakeholders to make their tacit wishes explicit
(thus improving the raw requirements), but also even to provoke new wishes
(thus improving the wishes).

• Information Analysis: this can be used as a pre-step to translation or question-
answering, but also on its own to make explicit specific characteristics of the
information. So e.g. the NLP tool could look for patterns in order to identify
or compare other information sources relevant to the given information or in
order to provide guidelines for similar information.

All of them require a syntactic, semantic and pragmatic understanding of the

information [3].

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

144

The first two applications support the documentation of requirements the last two
support the elicitation of requirements. All can support evaluation: IAD and information
analysis obviously target information quality. Translation supports evaluation as re-
phrasing always provides a new perspective. Clearly formalization helps to detect quality
problems, but also the other way round supports evaluation as new stakeholders can be
enabled to evaluate the formal information. Similarly, QAS puts the information into a
new perspective which helps to detect quality problems. Furthermore, all support
management, as they provide explicit traces between information they process and the
outcome of the processing. In addition, QAS typically provides traces to rationale of
requirements, information analysis provides traces to other information and between the
requirements on one level and IAD provides traces to quality problems.

Wishes

Raw Requirements

Consolidated Requirements

Specification

QAS

QAS,
Information Analysis

QAS,
Information Analysis

IAD, QAS, Translation

QAS, Translation

QAS,
Information Analysis

Figure 1: Application of NLP

As shown in Figure 1 the applications have different emphasis wrt. 4 levels: IAD is
only useful at the level of raw requirements (this also includes the case of adding
information to the consolidated requirements, bcause the new information should be
viewed as raw requirements before integration). QAS can be used to improve each of the
levels, where wishes can only be questioned on the basis of the raw requirements.
Translation can be used between different syntax and information analysis can be used on
speech or text. Clearly, information analysis and translation are more difficult in the

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

145

presence of implicit ambiguities and logical inconsistencies. Therefore it seems helpful to
first apply IAD. On the other hand information analysis can also help to reveal
information which is important for IAD, e.g. domain knowledge.

It is important to point out that in any case NLP for RE involves humans. For QAS this
is trivial. The information provided by information analysis has to be evaluated by
humans wrt. their usefulness. During IAD humans are needed to resolve the detected
ambiguities and inconsistencies. When consolidated requirements are translated to
specifications, humans are needed for the agreement step. And also for the translation of
raw requirements to consolidated requirements typically a lot of creativity is needed (as
mentioned for the QR examples above).

Just to illustrate the NLP opportunities discussed above let us look again at the
workshop examples. Given the general topic airport security QAS could stimulate the
stakeholders to utter the wishes as raw requirements (as they are given in the workshop
case study). In particular it could offer different scenarios relevant to security problems. A
human requirements engineer is needed to drive and monitor this process. The raw
requirements can be analyzed to detect patterns, e.g. topics which are particular important
for specific stakeholders, or related information which should be considered in the
discussion. The requirements engineer should decide whether further uses of QAS given
the additional information are helpful. Furthermore, translation into a more restricted
language for the raw requirements might be useful to enable more efficient processing.
Then s/he can decide to detect quality problems (like the missing metrics in the QR)
though IAD. The solution of the problems involves a lot of human creativity where QAS
and information analysis could be used repeatedly as above to elicit and improve new raw
requirements, and IAD to detect problems with these new requirements. After the
consolidation a target language for the specification is chosen. As illustrated for the QR,
in the translation of the consolidated requirements to the specification again a lot human
creativity is needed, in particular to investigate and solve the conflicts. NLP can be used
to automate translation wherever possible, so that the only the creative work is left to the
humans. The feasibility of this support clearly depends very much of the languages used
for consolidated requirements and specification. The more restricted the easier to process
for the computer, but often the more difficult for humans. As for the step from raw to
consolidated requirements QAS, information analysis and IAD can help to treat new
requirements.

4 Conclusion

The discussion above shows that the wide variety of information and communication and
formality levels in RE embodies many opportunities for NLP. But it also shows that it is
not easy to give a compact and stringent view on these opportunities. With the proposed
classification into 4 kinds of information processed by 4 major NLP applications I have

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

146

tried to provide such a view. Based on this view and my limited knowledge of current
NLP approaches (in RE) I conclude that the following research areas should be
emphasized:

• A lot of NLP for RE research has so far concentrated on IAD and translation, in
particular in the sense of formalization. As shown above there are also many
opportunities to support the elicitation stage through NLP. These should be
explored

• The efficiency of NLP support for RE depends crucially on the languages used to
formulate the requirements. Much research has focused on either natural or very
formal languages. Both are not adequate in most cases for RE, because the
concepts used in the information are on the one hand specific for the application
domain (such as e.g. airport security) and on the other hand specific for how the
information is to be used in the development process (e.g. QR need to be
documented differently from functional requirements (FR) as they are treated
differently in the development process. Typically QR are very relevant for
architecture decisions while the FR shape the system functions). More research is
needed to identify languages which capture these concepts and their treatment in
the development process nicely, and at the same time are understandable for the
relevant stakeholders and easily amenable to NLP.

References

1. Herrmann, A. Paech, B. “Quality Misuse”, Int. Workshop REFSQ’05, Essener Informatik
Berichte, pp. 193-199 2005.

2. Herrmann, A. Paech, B. “MOQARE: Misuse-oriented Quality Requirements
Engineering”, Requirements Engineering Journal, Springer-Verlag, accepted for
publication.

3. Jurafsky, D. Martin, J.H. Speech and Language Processing: An introduction to natural
language processing, computational linguistics, and speech recognition, Draft 2007,
Introduction, http://www.cs.colorado.edu/%7Emartin/SLP/Updates/1.pdf

4. Paech, B. Kerkow, D. “Non-Functional Requirements Engineering - Quality is essential”,
Invited paper, Int. Workshop REFSQ'04, Riga, pp. 237-250, 2004.

5. Pohl, K.: The Three Dimensions of Requirements Engineering; Proc. of the CAiSE
Conference, 8-11 June, Paris, Springer-Verlag, 1993.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

147

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

148

Model-Based Requirements Specification and Tracking for Service Oriented
Architecture (SOA) Based Systems.

John Salasin, Ph.D.
Visiting Researcher
National Institute of Standards and Technology

1 Requirements and Models

Requirements, whether expressed as a diagram or as text that captures a
discussion about needed capabilities, are the first of a family of models that
evolves with the system. Typically, these models (of requirements) start with
“back of the envelope” guesses and ending up with a fully elaborated model (the
system).

Several requirements need to be satisfied for model specification and elaboration
to be successful. First, for Service Oriented Architecture based systems, it is a
basic tenet that business managers, as opposed to information technology
specialists, define major aspects of the system, which map to the business
processes of the organization. This helps ensure that the information system
serves the business goals of the organization. This is one reason why the Object
management Group’s (OMG) Model Driven Architecture (MDA) approach begins
with a Business Process Modeling Notation (BPMN) -- a graphical notation that
depicts the steps in a business process. BPMN has been designed so that
business managers should be able to easily read and understand a BPMN
diagram. This implies that any (initial) formal specification of requirements, which
requires an understanding of formal logic(s) and takes significant time for a non-
mathematician to learn, will not be suitable for defining requirements for
business-driven systems.

Second, the early models of requirements should be as inexpensive for an
organization to produce as a back of the envelope diagram. This makes the use
of textual descriptions processed by natural language understanding (NLU) tools
improbable. NLU is based on an ontology that describes the concepts involved in
the business/system and relationships (e.g., of causality, correlation,
containment) among these concepts. Ontologies are currently very expensive
and time consuming to construct over a broad domain that incorporates multiple
contexts where the concepts and/or their relationships differ. Some systems,
such as the Semantic Network Processing System (SNePS)1 and Cyc2 address
the problem by partitioning the ontology according to context (e.g., microtheories
in CyC), where the logic must be consistent within a context but not between
contexts. Judgments about which context(s) to use in a given situation require
someone intimately familiar with both the language and the domain(s).

The time, cost, and skill required to build and use ontologies is not an issue in
simple domains. The Army, for example, has used artificial intelligence to lead
visitors through its recruiting Web site – replacing live recruiters with online chat.3

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

149

Gary Bishop, deputy director of the Strategic Outreach Directorate of the Army’s
Accessions Command, stated that “About 60 percent of the questions were
always the same ones.” While the article does not discus the technology used, a
model of the frequency of key words (or their synonyms) in a set of the most
typical questions should be sufficient to point to the correct answer.

2 Models and Metrics

Models express the “global invariants” of development. They must have elements
that are consistent, yet be adaptable to express different levels of refinement and
accuracy as design/implementation decisions are made and additional data
collected. Different sets of metrics from families of similar models are needed to
illuminate different characteristics of the system – from effectiveness and
efficiency at supporting the business mission (e.g., impact on business
performance versus resources required) to technical concerns (e.g., response
time, throughput, computer and communication resource requirements).
Measures based on the models provide metrics that can be used to express the
importance/significance of system characteristics, e.g., requirements. As the
system specification (and models) become more refined, they can ce used to
assess the extent to which the requirements are being (or will be) fulfilled.

We consider requirements/models throughout a project’s evolution.

 The earliest stages focus on concept development and obtaining
management support. The functions of the system and interactions with
other organizations are modeled. These (rough) models are used to
estimate the scope of the services provided in terms of the number and
types of consumers – from a single program to the public at-large.

 During architecture and construction, a number of SOA components are
specified and prototyped/implemented. Requirements (models) specify,
and, if the system is successful, predict, the impact of the IT initiative on
business results. They specify or assess specific characteristics of the
system and its harmonization with processes and systems in other parts of
the organization.

 During operation, the requirements / models posited in previous stages
can be refined and validated. The focus is on capturing (rather than
estimating) key elements of performance that directly relate to the IT
initiative. Models can estimate (or measure) robustness, actual usage of
Services or Service components, usability, and the extent of ongoing
governance – assessing whether requirements are satisfied and, possibly,
resulting in changes to original requirements.

 As the system evolves, we can collect data to validate
requirements/models specifying the ease with which a system can be
modified and expanded to include additional organizational units in the
enterprise.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

150

3 What’s Hard about SOA (unique features)

While SOA is a current fad in software development, it appears to provide the
approach most likely to succeed in facilitating the development of enterprise-wide
systems that operate across heterogeneous platforms. In the real world, SOA
systems evolve. They start by providing functionality to a small number of
organizational units and, if successful, “metastasize” to the rest of the enterprise.

SOA is not a discrete technology or language, but a mixture of an architectural
style and development approach that is intended to keep automated system
design synchronized with business processes and to allow business area
managers, rather than computer scientists, to define services and rules for their
interaction.4 Useful requirements and models for SOA must, therefore, go
beyond static (or dynamic) code analysis and technical performance to include
factors related to information utility and acceptance of the system by the
organization(s) participating in an enterprise. To be objective and repeatable,
such metrics need to be based on technical characteristics of the system (e.g.,
notations used to express both business processes and system architecture).

Business managers, as opposed to IT specialists, are expected to define major
aspects of system. The system requirements, reflected in system models, need
to specify the ease with which this can be done.

4 SOA requirements

SOA requirements, and the models used to express them, must address factors
related to the:

 Ease with which a system can be modified or expanded by business,
rather than IT, specialists;

 Extent to which the system provides all functionality required by all groups
of customers (Comprehensiveness);

 Factors that facilitate the spread of a system (or system-of-systems or EA)
across an organization;

 Capability of the organization responsible for a service (or an enterprise)
to specify, monitor and enforce all policies of concern, and;

 Utility, or value added by the System to the organization.

Some useful requirements, whose fulfillment can be assessed by models, include
the following.

4.1 Ease with which a system can be modified or expanded

 Extent to which the notations used to specify the system enable ease of
modification – including support to the co-evolution of business and
technical processes.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

151

 The percentage of system design elements (e.g., services and process
flows) that are explicitly linked to business process elements;

 The percent of operations that can be expressed in simple scripting
language (e.g., by business managers vs. programmers).

 The effort to make a change (e.g., Hours to make corresponding changes
to business and service specifications (e.g., substitution of a data item).

 Ease of changing the systems to serve different customers in different
organizations. Potential requirements/measures include:

o The effort required to make typical changes in, for example,
services/processes, data stores, service orchestration, and to
check on policy consistency / applicability when system changes
are made;

o Number of models available to assess critical aspects of the system
including factors related to, e.g.,: scalability, response time,
resource use, recovery from anomalies, overhead for rule
monitoring and enforcement.

4.2 Extent to which the system provides all functionality required

 Ability to trigger businesses processes in response to detected events
(both possibly outside the SOA)? Specific requirements / measures might
include the percent of anticipated external “effector components” that the
system can “talk to”;

 The amount of effort involved in writing triggering code. Is there a simple
scripting language to specify triggering conditions and actions? How long
does it take to learn?

 The percent of a supported task that can be accomplished with single
sign-on;

 The percentage of services/functions that need to collaborate which are
integrated in the system;

4.3 Factors that facilitate the adoption of a system across an enterprise include:

 The “fit” of system components (services) to higher levels of organizational
structure (e.g., the percentage of system services that map directly to a
defined organizational function or unit). While most services/SOAs will be
developed incrementally (e.g., to support one functional unit at a time),
effectiveness and efficiency require that the services are consistent with
an overall organizational framework.

 The “two way” potential of the SOA system for incorporating (reusing)
existing components and for the larger organization reusing components
developed for the SOA. The first item increases an organization’s
confidence, since they trust their own components, while the second
provides some immediate benefits to organizational components not
participating in pilot studies.

 A solid technology infrastructure, or computer engineering considerations
that are usually not visible to customers under normal operations. These
include measurements, or estimates, related to, e.g.:

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

152

o Fault detection and remediation;
o Robustness/Reliability -- including system-wide backup and

recovery;
o Performance and scalability.

4.5 Capability of the organization responsible for an enterprise to specify,
monitor and enforce all policies

 The percent of policies that can be easily specified monitored and
enforced.

 The time required to define and implement triggers to provide alerts for
(business) policy violations

 The expected effort and level of skill required to develop rules for
specifying and enforcing policies related to allowed, e.g.:

o Workflows, process sequences, pre- and post-conditions

4.6 Utility, or value added by the System

 The estimated cost to create an integrated business picture appropriate to
each type of customer;

 Changes in delay (information collection to use) and the estimated value
of more rapid and less expensive access;

 Increased scope of accessible information (e.g., cutting across stovepipe
systems) – possibly measured as the percent of critical information
elements needed for a typical decision that the system provides;

 Financial measures for producing products/services as measured by, e.g.,
o An increase in the number/percent of missions supported by

automated data collection, analysis, and reporting;
o A change in the number/percent of program elements meeting (or

expected to meet) cost/performance objectives.
o Measures of the system’s ability to provide information for

improving management, and;
o The time/training required for customer(s) to learn tasks.

 Total Cost of Ownership including the estimated range of time/effort to :
o change policy rules, services, and service orchestration,
o add various types of data sources,
o trigger new reports.

4.7 Significance
This work is technically significant for 3 main reasons.

Service Oriented Architectures requirements (and their assessment) requires
consideration of technology factors’ themselves (e.g., with respect to response
time) and their relationship to the organization (e.g., the ease of mapping
business process descriptions to SOA descriptions; the ease of scripting rules,
and; the ease with which system processing can be changed to account for
changes in the business process).

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

153

We attempt to define all requirements (e.g., ease of use, flexibility) in terms of
system characteristics that can be modeled and measured. The system is
defined by a set of evolving models.

Since we begin expressing requirements with coarse grained conceptual models,
measurement of these models’ characteristics can indicate areas where the
system might not meet some aspects of its requirements, allowing early
corrective action. More refined models allow us to track the success of corrective
actions.

1 [S. C. Shapiro. Sneps: A logic for natural language understanding and commonsense reasoning. In Iw

anska and S. C. Shapiro, editors, Natural Language Processing and Knowledge Representation: Language

for Knowledge and Knowledge for Language, pages 175--195. AAAI Press/ MIT Press, Menlo Park, CA,

2000.]
2 [D.B. Lenat and R.V. Guha, Building Large Knowledge-Based Systems (Addison-Wesley, Reading, MA,

1990]
3 Government Computer News, “‘Star’ power”, William Jackson, 02/19/07
4 “Service-Oriented Architecture expands the vision of Web services, Part 1:

Characteristics of Service-Oriented Architecture”, Mark Colan (mcolan@us.ibm.com), IBM Corporation

http://www-128.ibm.com/developerworks/library/ws-soaintro.html

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

154

Empirical Indicators for Very Early Functional
Complexity Estimation on Data Intensive Information

Systems

Pedro Salvetto1, Juan Carlos Nogueira1 and Julio Fernández2

1Information Systems Research Lab Faculty of Engineering Universidad ORT Uruguay
2Universidad ORT Uruguay

Cuareim 1451, ZIP Code 11100, Montevideo, Uruguay
{salvetto,nogueira,fernandez_j}@ort.edu.uy

Abstract. Intervention of expert judgment, along with intrinsic variability of estimation and
development processes, allows for large gaps between optimistic and pessimistic estimations.
In this work we study a sample of software development projects for data-strong management
information systems. We found an indicator of functional complexity that can be used at very
early stages to assess the effort required for developing the system. This early measure
facilitates the communication and the negotiation during the functional requirement phase
because it is objective and meaningful for end users.

Keywords: Empirical Complexity Indicators, Empirical Estimation Models, Formal Models

1 Motivation

Despite many similarities with ancient engineering and architecture disciplines, software
engineering has not reached the same level of formalism [7,15,17,26]. The lack of early,
automatically collected, and independent from human expertise metrics for functional
requirement complexity is one of the drawbacks that contribute to retain software
engineering in its primitive stage.
Such metrics could be useful in estimating time, effort, risk, and keeping track of the
project development. Moreover, the metrics could improve the communication between
users and developers providing a transparent tool to assess the cost of requirements,
changes, and maintenance along the life cycle [3,9,10,13,15,26].
Industry, academy and society in general are asking for software development to evolve
away from the artisan’s paradigm, to professionalize and to become more predictable.
One of the main difficulties is our poor comprehension of the internal processes that take

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

155

place in development teams. However, until such knowledge is available, empirical
models that allow estimation may be constructed [2].

2 Introduction

An issue with current estimation models is that they depend on expert judgment and they
require experienced personnel in order to be used [18]. Experienced personnel are scarce
[18] and the current trend to agile methodologies with reduced, highly motivated and
involved teams stresses the problem.
To improve estimation methods it is important to reduce the sources of variation in the
development process as well as in the estimation process. Among the main sources of
variation are: technology, expert judgment and size metrics that are not automatically
obtained and not represent essential functional complexity, such as LOC and FP
[15,22,23].
Making estimation independent of expert judgment would:
1. increase industry credibility
2. ease the relationship between client and developers by increasing its transparency
3. support joint change management
4. formalize the discussion among all involved stakeholders’ deadlines and risk issues on

an objective foundation [15]
5. contribute to evidence, on an objective basis, the risk introduced by fixing deadlines

with non-technical criteria
6. might support contracting practices that are not based upon a price fixed at the point in

which less is known about the project, but that instead allow to recomputed costs
according to project execution environment, requirement volatility, organizational
efficiency, average effort or development speed, system complexity etc.

7. supports small teams that lack experienced managers [16,22,23].
Disciplines such as architecture and civil engineering have elements such as mock-ups
and blueprints, from which metrics may be extracted and scaled. This allows adjusting
product design and, simultaneously, evaluating design impact on costs, deadlines and
even the appropriate technologies for construction.
Even if they cannot reach the degree of formalization available in other disciplines, early
indicators obtained from user data visions and models that -starting from those indicators-
allow the estimation of project duration and costs would have an impact in the state of the
art; they could prove useful in defining and managing software development projects.
[15].

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

156

Empirical Indicators for Very Early Functional Complexity Estimation on Data Intensive
Information Systems

3 Conceptual Model

3.1 Early Assessment of the Essential Functional Complexity of an Information
System

Assessing the functional complexity of an information system requires measures
independent from technology and methodology used in the project, and independent from
human expertise and other confounding factors. Such measures are useful only if they are
available at very early stages in the development cycle, and based on the user information.
Our hypothesis is that the system data set determines the complexity of the essential (non-
redundant) functional requirements. Even if the final requirements could be expressed by
various formats (queries, reports, etc.) by different groups of users, the essential
functional requirements remain the same. The problem to solve is then to identify the data
set used by the system.
At early stages, the system data set is uncertain. However, each user has a pretty good
idea of his data subset. This information could be expressed in various forms (reports,
queries, etc.) that constitute the external aspect of the system. The integration of all these
fragmented visions of data will define the system data set. This task implies dealing with
vision superposition, and redundancy. Nevertheless, the integration of all these visions
contains the same non-redundant information [12].
From all these visions it is possible to measure the functional complexity of the data
model by:
1. Integrating the data from user visions. This problem can be solved by using “synthesis

of canonical visions” resulting in a relational scheme in third normal form [12].
2. Measuring the complexity of such integration by measuring the functional complexity

of the data base schema.

3.2 Relational Data Base Complexity Metrics

For our purpose, the metrics proposed by Calero et al [5]: Number of Tables (NT); Degree
of Referentiality, constituted by the number of foreign keys (RD), Number of Unique
Attributes (NA) and Depth of Referential Tree (DRT) were most useful. These authors
analyze in detail the formal properties of the proposed metrics, underlining the fact that
they need an empirical support. From said metrics we developed an indicator of essential
complexity for DIMIS that gives, within the limitations of our study, an empirical
validation of the metrics.
These metrics are objective and automatically collectable. However, they are not
independent from the relational database schema. Automating the design from the user

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

157

views solves this difficulty, and as a side effect the metrics could be collected in earlier
stages. [20, 21, 22, 23, 24]. The influence of these metrics in the development time and
effort has been studied in a set of estimation models [25].

3.3 Need for an Indicator

These complexity metrics for relational databases are not independent and have little user
understanding. Instead of them, we use an indicator for essential complexity that
represents their join effect and can be helpful in negotiating requirements. This indicator
will be a function of the relational database complexity metrics presented above. The
general form of the indicator is E-IC = f(NT, NA, RD, DRT).

4 Field Study

We observed 42 projects related to data-strong information systems [20]. From these
post-mortem observations we selected 20 whose information was reliable and comparable.
After developing empirical models for time and effort, two Essential Data Complexity
Indicators (EDCIe and EDCIt) for Essential Data Intensive Management Information
Systems (E-DIMIS) were defined. Both EDCI use the complexity metrics for relational
data bases that were proposed by the ALARCOS group [5].
The complexity metrics for relational data bases were obtained automatically from the
integration of the data views of final users. These metrics:
1. Are very early, if tools for automatic generation of relational data base schemas

(representing the information contained in the set of user data views) are available.
2. Do not contain information related to detailed design, technological considerations or

even the individual ways in which final users perceive their data.
3. Do not require expert judgment.
4. Are independent of the starting set of user data views.
The metrics properties are inherited by the indicators built on them. Therefore, the
indicators are very early, formal and independent of expert judgment, design
considerations, technology, the way in which final users perceive their data and other non-
essential factors of the system.
The complexity indicators correlate well with the actual time and effort spent in the
projects. The correlation is significant because it is supported by a number of causal
analyses [19,20,21, 22, 23]. The indicators allowed the development of estimation models,
and the models do not conflict with empirical observations, which are important
properties [1,4, 5, 6,11,14].

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

158

Empirical Indicators for Very Early Functional Complexity Estimation on Data Intensive
Information Systems

4.1 Genexus

Genexus is a 4GL which generates the relational database and application programs
required for the MIS under construction from its formal specifications. The tool stores
information about the product specification in a knowledge database (KB). This data is
very useful to capture metrics in an automated way.
The methodology behind the tool relies on two premises. First, in a middle or large
company nobody has a global vision of the processes. Consequently, it is required to
integrate different visions from various users. Second, requirements and database
structures exhibit changes over the time.

The formal specification allows modeling the system, generating the database and code
for the application.

4.2 The observed projects

We observed completed E-DIMIS (post mortem) developed by small groups of two to
five people using a formal specification tool. The relational data base complexity metrics
were obtained automatically from the specification. Project managers were asked to
estimate the requirement volatility, which produced three sets of values: 30 %, 20% and
10%. Project managers also gave information about the project duration and total effort.
Reported effort includes the whole staff.
Organizational efficiency was considered constant within the sample, because projects
were developed by similar groups using a standard methodology supported by the
development tool. Metrics extracted from the specification were obtained automatically.

5 The Essential Data Complexity Indicators for Time and Effort
(EDCIe and EDCIt)

Salvetto [25] developed two formal models for very early effort and time estimation.
If we isolate from these models just the variables representing data structure complexity
(DRT, RD, NA y NT) we may define two indicators:

EDCIE=DRT -2,234 RD -0,077 NA1,951 NT-0,516 (1)

EDCIT=DRT-2,467 RD -0,209 NA 1,84 NT-0,271 (2)

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

159

LN(EDCIt) VS LN(TIME)

y = 0,964x - 3,4265
R2 = 0,8972

0
1
2
3
4
5

4 5 6 7

LN(EDCIt)

LN(TIME)

Fig. 1. LOG-LOG correlation graphic between Time and EDCIt

LN(EDCIe) VS LN(EFFORT)

y = 1,0523x - 3,1442
R2 = 0,9191

0

1

2

3

4

5

4 4,5 5 5,5 6 6,5 7 7,5

LN (EDCIe)

LN(EFFORT)

Fig. 2. LOG-LOG correlation graphic between Effort and EDCIe

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

160

Empirical Indicators for Very Early Functional Complexity Estimation on Data Intensive
Information Systems

6 Conclusions

Our results confirm agree with DeMarco´s [8] point that data-strong systems may be
estimated from their data, and confirm the validity of the relational data base complexity
metrics proposed by the ALARCOS group [5]. Our results also suggest that essential
complexity for E-DIMIS depends strongly on the final users’ data views. The complexity
is made explicit by the indicators EDCIe y EDCIt.

This paper introduces two early indicators of complexity related to development effort
and time. These indicators can be used in estimation models for E-DIMIS.

The use of such indicators can contribute to improve the communication between users
and developers during requirements negotiation.

The size of the population studied limits the validity of our conclusions as often
happens in empirical studies.

References

1. Boehm, B., Madachy, R. and Selby, R.: Cost Models for Future Software Life Cycle
Processes: COCOMO 2.0. Ann. Software Eng. 1: 57-94 (1995)

2. Boehm, B., Sullivan, K.: Software Economics A Roadmap. University of Southern
California University of Virginia Department of Computer Science Thornton Hall
Los Angeles, CA 90089-0781 USA Department of Computer Science.
http://www.cs.virginia.edu/~sullivan/publications/ICSE-2000-Roadmap.PDF

3. Briand, L., Khaled, L., Morasca, S.: Theoretical and Empirical Validation of Software
Product Measures. This paper appears as Technical Report number ISERN-95-03,
International Software Engineering Research Network, 1995.

4. Briand, L., Morasca, S. and Basili, V.: An Operational Process for Goal-Driven
Definition of Measures. IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 28, NO. 12, DECEMBER 2002 pp 1106-1125

5. Calero, C., Piattini, M., Polo, M., Ruiz, Grupo ALARCOS .Departamento de
Informática,Universidad de Castilla La Mancha: Métricas para la evaluación de
Complejidad de Bases de Datos Relacionales. Computación y SF.stemas

Vol. 3, Nº 4, pp 264-273, 2000, CIC – IPN. ISSN 1405-5546.
6. Chulani, S., Boehm, B. and Steece, B.: Bayesian Analysis of Empirical Software

Engineering Cost Models. IEEE Trans. Software Eng. 25(4): 573-583 (1999)
7. Construx Software Inc. http://www.construx.com/estimate.

8. DeMarco, T.: Controling Software Projects. Yourdon Press, New York, 1982.
9. DEPARTMENT OF THE AIR FORCE, Software Technology Support Center

Guidelines for Successful Acquisition and Management of Software-Intensive
Systems: Weapon Systems, Command and Control Systems, Management
Information Systems Version 4.1, Condensed Handbook , 2003.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

161

10. DEPARTMENT OF THE AIR FORCE, Software Technology Support Center.
Guidelines for Successful Acquisition and Management of Software-Intensive
Systems: Weapon Systems, Command and Control Systems, Management
Information Systems Version 3.0, Fall 1999.

11. Fenton, N. and Pfleeger, S.: Software Metrics. A Rigorous & Practical Approach. PWS
Publishing Co. 1997.

12. Gonda, B.: ¿Desarrollo orientado a procesos u orientado a datos? Algunas reflexiones
en el 40° aniversario de los Sistemas de Gerencia de Bases de Datos, ARTech,
2003 www.genexus.com/whitepapers

13. Humphrey, W.S.: Your Date or Mine. In The Watts New Collection. Software
Engineering Institute, Carnegie Mellon University, http://interactive.sei.cmu.edu/,
2001.

14. Juristo, N. & Moreno, M.: Basics of Software Engineering Experimentation. Kluwer
Academic Publishers 2001.

15. Kavoussanakis, K., Sloan T.: THE UNIVERSITY OF EDINBURGH UKHEC Report
on Software Estimation Document EPCC-UKHEC 0.1

16. Latorres,E, Salvetto, P., Nogueira, J.,Larreborges,U.: Una herramienta de apoyo a la
gestión del proceso de desarrollo de software. Proceedings CACIC 2003. La Plata,
2003.

17. McConnell, S. :Rapid development: taming wild software schedules. Microsoft Press,
1996.

18. Nogueira, J.: A Formal Model for Risk Assessment in Software Projects. PhD
Dissertation. Naval Postgraduate School, Monterrey, California.September,2000.

19. Salvetto, P. and Nogueira, J. Size Estimation for Management Information Systems
Based on Early Metrics :An Automatic Metric Tool Based in Formal
Specifications. Proceedings of the International Conference on Computer Sience,
Software Engineering,Information Technology, e-Business and Applications
(CSITeA’03), june 5-7, 2003 Rio de Janeiro, Brazil in Cooperation with the
International Society for Computers and Their Applications (ISCA), USA Winona
State University (WSU), USA Universidad Nacional de San Luis (UNSL),
Argentina Net of National Universities with Computer Science Careers
(RedUNCI), Argentina. Pags 72-77.ISBN 0-9742059-0-7.

20. Salvetto, P., Carrillo, J., Marbán, Ó, Fernández, J., Nogueira, J. y Segovia, J.:
Indicadores Empíricos Formales y muy Tempranos de Complejidad Esencial de
Sistemas de Gestión Intensiva de Datos: un modelo conceptual. II Conferencia
Internacional Encuentro ISBSG-AEMES VI Conferencia Anual de la Asociación
Española de Métricas de Sistemas Informáticos. Métricas TI: La experiencia en la
Mejora de Procesos TI. 4-5 de octubre de 2005, Madrid, España. (Publicado en la
Revista de Procesos y Métricas de la Asociación Española de Métricas de Software
Volumen 3, Número 1, Abril de 2006, ISSN 1698-2029).

21. Salvetto, P., Martínez, M., Luna, C. and Segovia, J.: A Very Early Estimation of
Software Development Time and Effort Using Neural Networks. X CONGRESO
ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 2004 (CACIC04) San
Justo, Buenos Aires. Argentina, octubre de 2004.

22. Salvetto, P., Nogueira, J y Segovia, J: Gestión de Cambios Apoyada por Modelos
Formales de Estimación de Tiempo y Esfuerzo. 4 tas JORNADAS

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

162

Empirical Indicators for Very Early Functional Complexity Estimation on Data Intensive
Information Systems

IBEROAMERICANAS DE INGENIERÍA DE SOFTWARE E INGENIERÍA DEL
CONOCIMIENTO JIISIC’04. Facultad de Informática Universidad Politécnica de
Madrid. 3-5 de noviembre de 2004. Madrid, España

23. Salvetto, P., Nogueira, J y Segovia, J: Modelos Automatizables de Estimación muy
Temprana del Tiempo y Esfuerzo de Desarrollo de Software de Gestión .XXX
CONFERENCIA LATINOAMERICANA DE CIENCIAS DE
LACOMPUTACIÓN (CLEI 2004) 27 de septiembre – 1 de octubre 2004. Arequipa
Perú.

24. Salvetto, P., Nogueira, J., Fernández, J y Segovia, J.: Una Verificación Empírica
deModelos Automatizables de Estimación muy Temprana de Proyectos de
Desarrollo de Sistemas de Gestión. 4 tas JORNADAS IBEROAMERICANAS DE
INGENIERÍA DE SOFTWARE E INGENIERÍA DEL CONOCIMIENTO
JIISIC’04. Madrid, España.

25. Salvetto, P.: Modelos Automatizables de Estimación muy Temprana del Tiempo y
Esfuerzo de Desarrollo de Sistemas de Información. Tesis Doctoral. Facultad de
Informática Universidad Politécnica de Madrid. Madrid, España. 29/11/2006.

26. Sommerville, I.: Software Engineering, Sixth Edition. Addison-Wesley Publishers
Limited, 2001.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

163

Annex 1 Definitions, Axioms and Assumptions on which the research
is based.

Definition 1: A Data Intensive Management Information System (DIMIS) is a management
information system which:
1. Does not process object oriented databases, geographic databases, complex object and

other data features uncommon in traditional MIS.
2. Where high complexity algorithms are rare or inexistent.
3. Does not have critical time requirements.
Definition 2: Attribute. Atomic data, with semantics defined for some DIMIS user, to
which a type and a unique name are associated. If two attributes has the same name then
their semantic is the same.
Definition 3: User data view (UDV) A set of attributes that represent one user’s vision of
an entity to be represented in the DIMIS, such as the user perceives it, without having any
design, normalization, or other criteria applied to it by system developers.
Definition 4: System user data views (SUDV) Set of data user views (UDV), not
necessarily disjoint, of a DIMIS, in which attributes semantically identical have the same
name.
Axiom 1: Need for integration of User Data views (UDVs) In a medium or large
organization, nobody has a global view of data and processes. Therefore, there is a need to
integrate the individual UDVs in system in order to construct an integral view of the data.
Definition 5: Essential DIMIS (E-DIMIS) is a DIMIS in which only non-redundant
functionality was developed, on the basis of the SUDV, integrated from user views and
requirements.
Definition 6: Global Empirical Model of Formal Estimation (GEMFE). Empirical model
for global estimation that allows the estimation of the total development effort or time for
an E-DIMIS, does not require expert judgment, and may be automated.
Definition 7: Essential Complexity Indicator of an E-DIMIS (E-CI). A real number that
may be obtained before any design activity takes place and that does not require expert
judgment, starting from any SUDV of the E-DIMIS, and that is used as an independent
variable of a GEMFE for the E-DIMIS for which it was obtained.
Axiom 2: The E-CI is independent of the SUDV from which it was obtained. This is
intuitively justified because the E-DIMIS under study are based on data, with a minimal
proportion of high complexity algorithms, and because user views are not influenced by
the technology, design concepts or other criteria alien to the system itself, introduced by
designers. Although the same system could be perceived by users in multiple ways, the
resulting SUDV must contain the information needed to develop it. Therefore, from that
point of view, the different user perceptions are equivalent.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

164

Axiom 3: Continuous Change inherent to information systems. Requirements,
environment and user data views are subject to constant and unavoidable changes with
time. Therefore, the integration of the UDV in a SUDV must be automatic and continuing.
Definition 8: Essential information of a SUDV (EIV). The maximum quantity of non-
redundant information on the attributes of some entity or the relationships that may be
inferred among entities from the SUDV in which they are featured.
Definition 9: Essential Functionality of a SUDV (EFV). The maximum non-redundant
functionality that may be obtained from its EIV.
Axiom 4: The Essential Information of all the SUDV of an E-DIMIS is the same.
Axiom 5: A single SUDV (any) of an E-DIMIS determines the E-CI of the E-DIMIS.
Definition 10: Potential Functionality of an E-DIMIS. The portion of the EFV that has not
yet been developed.
Axiom 6: The E-CI is an indicator of the EFC and its semantics is the “potential
information of the data structure of the information system”. The E-CI could be described
as the potential information of the system data structure. It shows the maximum
information and functionality that could be achieved, given the system data structure. If
more functions are added, new data and/or new relationships would be needed, increasing
complexity or introducing redundant functionality, which would contradict definition 5.
Assumption 1: The final Potential Functionality of an E-DIMIS will be null. The EFV is
the most that can and will be done, since it was obtained from the users’ data vision, and
if users could once evoke a piece of data in their memory, some day they may evolve a
requirement associated with that piece of data. So, at the end of the development process,
it will not be possible to add new, non-redundant functionalities that are useful to the
business or to some user without including new data or new relationships among existing
data. In other words, the “potential information” of the data will have been fully converted
into information and non-redundant functionality.
Axiom 7: An E-CI contains useful information as an input to a GEMFE. The final product
of the transformation of the “potential information” in the data structure is not determined.
Different users may request the functionality and information that may be obtained from
the data structure in different ways, but the effort needed to produce it will be, under
similar conditions, the same.
Assumption 2: Reduction of variability has an impact in the global estimation of results.
Even though we do not understand in depth the complex internal processes and
interactions that take place during the development process, we can observe the process
and build models that estimate well its global results, if we reduce the sources of
variability by using tools for automatic data base design, automatic code generation and
module integration, and that support the work of a small group of developers, integrating
users and following a standard methodology.
Assumption 3. It is possible to empirically determine E-CI from the observation of the role
played by data complexity metrics in GEMFEs.
Definition 11: Formal DIMIS Specification (FSS). A specification of an information
system that –given an adequate generator- has enough elements to automatically create

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

165

the code needed to operate the system in a wide set of programming languages and
execution platforms, starting from a FDS (see next definition).
Definition 12: Formal data specification of a DIMIS (FDS). Specifications of some
SUDV that contains enough information about the data and relationships that the system
must handle, in order to automatically infer a relational data base schema that represents
the information in the SUDV.
Definition 13: Formal DIMIS Data Specification Tool of a DIMIS (FDST). A software
tool that supports the activities of development and storage of a FDS.
Definition 14: Data Structure Generation Tool A software tool that, starting from a FDS,
generates a relational data base schema that represents the FDS.
Definition 15: Formal DIMIS Specification and Development Tool (FDSDT). A software
tool that supports the activities of maintenance and development of a FSS, with at least
the following capacities:
1. To specify the SUDV
2. To treat attributes with the same name as the same, independent of where the attributes

are referenced, and to infer, starting from the attributes, the relationships among the
entities represented in the DIMIS.

3. To generate a relational data base schema that represents the information contained in
the SUDV.

4. To maintain the UDVs that constitute the SUDV of the DIMIS, allowing
• To eliminate a UDV
• To create a new UDV
• To eliminate an attribute of an UDV
• To add an attribute to a UDV

5. To specify relationships among UDVs
6. To specify processes by means of references to data, based on the SUDV,

independently of the relational data base schema.
7. To automatically generate a relational data base schema, representing the information

contained in the SUDV.
8. To automatically generate code for the system processes in different languages and

execution platforms
9. To automatically evaluate the impact of a change in the SUDV on the relational data

base schema, to report it, and, if the change is confirmed and consistent, then
10.to generate automatically the new relational data base schema representing the new

SUDV
11.to automatically generate the code needed to migrate data from the old schema to the

new
12.to automatically generate code for those system processes that were affected by the

change
13. to automatically integrate, as long as there are no repeated attribute names, the

specifications of different DIMIS to produce a single one, representing the integrated
view of the individual systems, reporting inconsistencies if needed

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

166

Requirements to Components: A Model-View-Controller Architecture

Sabnam Sengupta

Department of Computer Science &

Engineering,

Jadavpur University, Kolkata –

700032, India.

sabnam_sg@yahoo.com

Abhik Sengupta

Cognizant Technologies Solutions

Salt Lake, Sector V,

Kolkata - 700091, India.

Abhik.sengupta@cognizant.com

Abstract: In this paper, we propose a framework where functional requirements are

traced from use case model to component model via analysis and design models.

Here, components of the component models are derived by grouping and packaging

design classes based on the type of analysis classes they are derived from. As there

are three different types of analysis classes: boundary, controller and entity, the

design classes derived from the corresponding analysis classes get classified at the

first iteration. The components thus derived using this approach form the

components of Model View Controller Architecture; different components having

design classes of similar functionalities. This framework can be used to verify and

ensure that use case flow of events is traced in analysis model and then to

component model via design models. The architecture with the components designed

using this framework also ensures separation of concerns, roles among the

components to achieve high cohesion and low coupling.

Keywords: Model-View-Controller Architecture, Use case model, analysis model,

design model, component model, Component based architecture, UML Component

diagram, XML.

1. Introduction

Component-Based development, realizing the intuitive and attractive idea of rapidly

obtaining complex software systems by the assembly of simpler components, has long

captivated the industrial practitioners with the promise of cheaper products with higher

reliability and maintainability. A software component is a unit of composition with

contractually specified interfaces and explicit context dependencies only. Reusability,

whose benefits include both the reduction of costs and time-to-market of software

products, is a key issue in software engineering. Component-based software development

has emerged to increase the reusability and interoperability of pieces of software.

Component-based development aims at constructing software artifacts by assembling

prefabricated, configurable and independently evolving building blocks, the so-called

components.

However, it is only via a rigorous design discipline and by adopting standard modeling

notations as well as strict documentation and design rules that components independently

built can effectively interact. This is the basic notion of Design-by-Contract [3], discipline

originally conceived for Object-Oriented systems, but even better suited for Component

Based development; indeed Objects and Components, though differing concepts, share

many aspects.

In recent years, the focus of software development has progressively shifted upward, in

the direction of the abstract level of architecture specification. High-level and

standardized models must be adopted, in such a way that the consistency (compatibility

and the interoperability) among components can be verified as early as possible. The

widespread adoption of the Unified Modeling Language (UML) evidences this trend, and

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

167

its flexibility to specialized yet standard-compatible extensions, where necessary, provides

a valuable tool for pursuing this direction. In particular, Cheesman and Daniels [1]

describe how UML can be specialized for modeling within a Component Based paradigm

embracing the basic principles of the Design-by-Contract approach [3]. Very recently, the

OMG Model Driven Architecture (MDA) approach to development pursues a complete

separation between the base platform-independent model of an application, and the

descriptions of one or more platform-specific models, describing how the base is

implemented on each of the supported platforms [2]. The base model in MDA is specified

in UML.

Model-view-controller (MVC) is an architectural pattern used in software engineering. In

complex computer applications that present lots of data to the user, one often wishes to

separate data (model) and user interface (view) concerns, so that changes to the user

interface do not affect the data handling, and that the data can be reorganized without

changing the user interface. The model-view-controller solves this problem by decoupling

data access and business logic from data presentation and user interaction, by introducing

an intermediate component: the controller.

This work focuses in that direction of designing and packaging components with the

design classes. These design classes trace the analysis model that is derived from the use

case model. As there can be three types of analysis classes: boundary, controller and

entity, the design classes also get categorized accordingly. The components, too, being

derived by packaging design classes of similar functionalities get their roles defined at a

very early stage. There can be three types of roles:

Model: Domain specific representation of the information, i.e., the data models,

View: Components, through which the users interact with the system,

Controller: Components that get invoked directly with the user interaction and they invoke

the appropriate models based on the user input.

These components build Model-View-Controller (MVC) architecture, which is essentially

component-based architecture.

2. Review of Related Works

Lots of research works are going on in the field of Component based architecture. In most

of these works, special interest has been given recently to the reconfiguration and

migration of components in component-based system. Some design methodologies

addressing component-based development have been proposed recently. Most of them are

based on the UML [7], c.f. [4, 5, 6].

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

168

Cheesman and Daniels [1] describe how UML can be specialized for modeling within a

Component Based paradigm embracing the basic principles of the Design-by-Contract

approach [8]. Amber [8] is an abstract component based modeling language combines a

model-based approach [8] with a UML-based approach [5]. This combined approach aims

at profiting from the advantages of both approaches. Catalysis [4] is another complex

software development process based on UML. Similarly to the Unified Process [5],

Catalysis is much like a process template, which can be tailored according to a particular

development project. Catalysis being flexible and scalable, it is popular among software

developers. A major benefit of Catalysis is its explicit use of components.

However, being a broad software development process, Catalysis is not completely

component-oriented.

As in recent time the focus in the software industry has moved into reusability of

components and creation of repository of components, it would be effective if we can

design a component model where the roles of different components are very well defined

that would make the components easily replaceable and modifiable as the components

become highly cohesive and less coupled with each other. With that aim we propose a

Model-View-Controller architecture in designing a component that trace functional

requirements from use case model to analysis model to design model and then to

component models.

3. Scope of Work

A software component is a physical, replaceable part of a software system that packages

implementation and provides realization of a set of interfaces. When we are considering

software architecture based on components, a component should have a specification, it

should have an implementation, it should conform to some standards, it has to be package

able into modules, and it should be deployable. A component specification is usually

complete; it contains all the information that a client of the component needs to know. A

component specification makes it easier to buy, sell, and replace components -- if the

component fulfils its contract, it should function correctly in the system. From a client’s

perspective or user’s perspective, there is no need to explore into a lower level of detail

before using the component.

But, from an architectural perspective it is extremely important how these components are

built so that there is a very clear separation of concerns. The architecture based on these

components can achieve a very high cohesion and very low coupling. With that vision, we

here propose to derive component models that trace to the use case models that handle

functional requirements specified in the Software Requirement Specification (SRS)

Document. Analysis classes in the analysis model realize use case models and analysis

classes are traced to design classes.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

169

As analysis classes are classified as: boundary, control and entity classes, the design

classes also get classified accordingly.

Packaging design classes that play similar kind of roles in the architecture derives the

components of component model. This approach is illustrated in Figure 1.

When different components are assembled, they are assembled through the interfaces they

implement. Interfaces are specifications of services provided by classes or components.

Use Case Model

Functional

Requirements

Analysis Model
Entity

Boundary

Control

Design Model

<<trace>>

Component Model

<<trace>>

<<View>>

<<Controller>>

<<Model>> <<Model>>

Figure 1: From Use Case Model to Component Model: A Model-View-Controller Framework

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

170

Interfaces are most closely associated with components; a component without an interface

may be technically well formed, but suspect. Functional Specification of these

components and consistency verification among them are very important to ensure cost

effectiveness at a very early stage of deployment.

In this paper, we propose a component based architectural framework that follows Model-

View-Controller design pattern where roles of the components are well defined; ensuring

separation of concerns. Packaging design classes of similar roles; ensuring high cohesion

and low coupling build these components. We propose several XML schemas for different

models used in different phases of software development.

4. Functional Requirements to Components

Traditional object-oriented software development aims at providing reusability of object

type definitions (classes), at design and implementation levels. In contrast, component

based development aims at providing reusability of components at deployment level. In

this way, components represent pieces of functionality that are ready to be installed and

executed in multiple environments. In this paper, we propose to address a design issue in

component-based development, i.e., separation of concerns, roles of components to

achieve low coupling and high cohesion among the components. For that, we propose

some restrictions, following best practices that are adhered to by most designers in any

case, in designing these components. The restrictions are:

1. Each use case of use case model has to be traced in

a. One or more boundary classes

b. One or more entity classes

c. One or more control classes

In the analysis model

2. An analysis class has to be traced in one or more design classes.

3. If a design class in design model traces more than one analysis classes, then the

type of the analysis classes has to be the same, i.e., either one of boundary,

control and entity.

4. When a design class or a set of classes are grouped and packaged to build

components, the design classes that trace same type of activity classes have to be

grouped. For example, if there are three design classes, all of them tracing

“boundary” type analysis classes, they can build a component. But, if they trace

different types of design classes they may not be grouped to build a component.

The restriction 4 ensures that each component plays a unique role in the architecture.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

171

a. They can act as “interfaces” through which the users interact with the system, or,

(View)

b. They can act as components that invoke different data models based on user

input, or, (Controller)

c. They can act as the data models themselves. (Model)

This builds MVC architecture.

In the following sections, we propose XML schemas for different models used in software

development. These XML schemas conform to OMG’s XMI standard. Java programs that

use XML parser are used to verify the restrictions proposed.

4.1 Use Case Models to Analysis Models

UML use case diagrams have become the de-facto standard for defining and capturing

functional requirements. In Unified software development process use case models consist

of UML use case diagrams. A use case diagram is composed of use cases, their actors,

their relationships and their flow of events (also known as Activity Flows). In the analysis

model, a use case is realized in collaboration and collaborations are mapped to the

analysis classes. There can be three types of analysis classes: Boundary, Control and

Entity. Boundary classes in general are used to model interaction between the system and

its actors. Entity classes in general are used to model information that is long-lived and

often persistent. Control classes are generally used to represent coordination, sequencing,

transactions, and control of other objects. And it is often used to encapsulate control

related to a specific use cases. Here, in order to trace functional requirements into

component design, we propose a restriction: A use case has to be traced in

This translation is diagrammatically represented in Figure 2.

Figure 2: Requirement tracing from use case models to analysis models

For this tracing, we propose XML schemas representing use case model and analysis

model as shown in Figure 3 and 4 respectively.

<<trace>>

Use Case

Use Case Model Analysis Model

Collaboration

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

172

<xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="URI"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsd=http://www.w3.org/2001/XMLSchema xmlns:p="URI">
<xsd:import namespace=http://www.omg.org/XMI
schemaLocation="xmi20.xsd"/>
<xsd:complexType name="UseCaseModel">
<xsd:sequence>

<xsd:complexType name="UseCase">
<xsd:element name="ucId" type="xsd:integer"/>
<xsd:element name="ucName" type="xsd:string"/>
<xsd:complexType name=”Events”>

<xsd:complexType name="Event">
<xsd:attribute name="eventId" type=”xsd:integer”

use=”required”/>
<xsd:element name="eventDesc" type=”xsd:string”/>
<xsd:complexType name=”tracedByAnalysisClasses” >
<xsd:element name=”analysisClass” type=”xsd:string”

/>
</xsd:complexType>
</xsd:complexType>

</xsd:complexType>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Figure 3: XML Schema representing Use Case Models

<xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="URI"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsd=http://www.w3.org/2001/XMLSchema xmlns:p="URI">
<xsd:import namespace=http://www.omg.org/XMI
schemaLocation="xmi20.xsd"/>
<xsd:complexType name="AnalysisModel">
<xsd:sequence>

<xsd:complexType name="AnalysisClass">
<xsd:attribute name="type" type="xsd:string"/>
<xsd:element name="name" type="xsd:string"/>
<xsd:complexType name=”EventsDealt”>
<xsd:sequence>

<xsd:complexType name="Event">
<xsd:attribute name="id" type=”xsd:integer”

use=”required”/>
</xsd:sequence>
</xsd:complexType>

</xsd:complexType>
</xsd:sequence>
</xsd:complexType>

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

173

</xsd:schema>

Figure 4: XML Schema representing Analysis Models

These XML schemas follow the XMI standards.

A Java program that uses an XML parser is used to verify if all the events in activity flows

of use case model has got mapped to the analysis classes in the Analysis model. The same

program is also used to ensure that the type of analysis classes can be either one of

boundary, control and entity.

4.2 Analysis Models to Design Models

The analysis classes derived in the analysis models get traced to the design classes of the

Design Model. This is shown in Figure 5.

Figure 5: From Analysis Models to Design Models

Here we propose a XML schema representing a design model in Figure6.

<xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="URI"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsd=http://www.w3.org/2001/XMLSchema xmlns:p="URI">
<xsd:import namespace=http://www.omg.org/XMI
schemaLocation="xmi20.xsd"/>
<xsd:complexType name="DesignModel">
<xsd:sequence>

<xsd:complexType name="DesignClass">
<xsd:element name="name" type="xsd:string"/>
<xsd:complexType name="TracedAnalysisClasses">

<xsd:element name=”analysisClass” type=”xsd:string”/>
</xsd:complexType>

<<

A B C D

F GE

Analysis Model

Design Model

H

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

174

</xsd:complexType>
</xsd:sequence>
</xsd:complexType></xsd:schema>

Figure 6: XML Schema representing a Design Model

Similarly a Java program that uses an XML parser is used to verify that each analysis

class in Analysis model gets traced to one or more design classes. The same Java program

is also used to ensure that if a design class in design model traces more than one analysis

classes, then the type of the analysis classes has to be the same, i.e., either one of

boundary, control and entity.

Figure 7: Component Model

4.3 Design Models to Component Models

The Design classes that trace the activity classes are packaged to build components. This

is shown in Figure 7.

Here, we propose a XML schema that represents the component model as shown in Figure

8.

<xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="URI"
xmlns:xmi="http://www.omg.org/XMI"

<<Controller>

A

B

C

D

SubSys

E

G

F

H

<<View>>

<<Models>>

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

175

xmlns:xsd=http://www.w3.org/2001/XMLSchema xmlns:p="URI">

<xsd:import namespace=http://www.omg.org/XMI
schemaLocation="xmi20.xsd"/>
<xsd:complexType name="ComponentModel">
<xsd:sequence>

<xsd:complexType name="Component">
<xsd:attribute name="id" type="xsd:integer"
use=”required”/>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="type" type="xsd:string"/>
<xsd:complexType name=”DesignClasses”>

<xsd:complexType name="class">
<xsd:attribute name=”name” type=”xsd:string”

use=”required”>
</xsd:complexType>

</xsd:complexType>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Figure 8: XML Schema representing a Component Model

A Java program that uses a XML parser is used to verify that the design classes that build

a component trace the same type of analysis class in the analysis model; as stated in

restriction 4.

In the following section we explain our approach with the help of a case study.

5. Case Study

We have considered a simple example of a Library System where a member can register,

cancel membership, issue and return books from the library. The use case diagram is

shown as in Figure 9.

Figure 9: Use Case Model of Library System

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

176

The Flow of events for “Registration” is:

1. Person details are entered.

2. Checking is made whether an existing member or not.

3. If not an existing member, membership is created and a member ID is

generated.

The Flow of events for “Issue Book” is:

1. Member ID is entered and validated

2. Every Member has a maximum allowable limit for issuing books, which

depends on member category. Check whether member is allowed for issuing

books

3. If issue is allowed accept Book ID and validate it.

4. Check if the book is already issued to the member and needs re-issue.

a. If re-issue request then check if there is any demand pending

b. If yes, re-issue request rejected.

c. If no, the book is re-issued.

5. If request is for issue

a. Check for availability of book

b. If available, issue the book

6. Otherwise, place demand on hold.

The Flow of events for “Return Book” is:

1. Member ID is entered and validated.

2. Book ID is entered and validated.

3. Checking is made whether that book was issued to that member or not.

4. Book data is updated.

5. Member data is updated.

The flow of events for “Cancel Membership” is

1. Member ID is entered and validated

2. Check if any book is already issued to the member or not.

3. If no book is issued to the member, the membership is cancelled.

The part of the XML file representing this use case model is shown in Figure 10.

<?xml version="1.0"?>
<UseCaseModel>

<UseCase>

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

177

<ucId> 01 <ucId>
<ucName> Register </ucName>
<Events>
<Event eventId = ‘1.1’>
<eventDesc>

Person details are entered.
</eventDesc>
<tracedByAnalysisClasses>
<analysisClass>

Authorization Interface
</analysisClass>
</tracedByAnalysisClasses>

</Event>
<Event EventId = ‘1.2’>
<eventDesc> Checking is made whether an existing

member or not.
</eventDesc>
<tracedByAnalysisClasses>
<analysisClass> Authentication
</analysisClass>
<analysisClass>
Member
</analysisClass>
</tracedByAnalysisClasses>

</Event>
……………

</Events>
</UseCase>

<UseCase>
<ucId> 01 <ucId>
<ucName> Issue Book </ucName>
<Events>

<Event EventId = ‘2.1’>
<eventDesc></eventDesc>
<tracedByAnalysisClass>
</tracedByAnalysisClass>

</Event>
<Event EventId = ‘2.2’>
<eventDesc></eventDesc>
<tracedByAnalysisClass>
</tracedByAnalysisClass>

</Event>
……………

</Events>
</UseCase>
……………………………

</UseCaseModel>

Figure 10: XML Document representing Use Case Model of Library System

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

178

The use cases of the Use Case Model are traces to the Analysis classes that build the

analysis model as shown in Figure 11.

Figure 11: Analysis Model of a Library System

The part of the XML file that represents the analysis model is shown in Figure 12.

<?xml version="1.0"?>
<AnalysisModel>
<AnalysisClass type=’boundary’>
<name> Authorization Interface </name>
<EventsDealt>

<Event id=’1.1’ />
</EventsDealt>

</AnalysisClass>
<AnalysisClass type=’control’>
<name> Authentication </name>
<EventsDealt>

<Event id=’1.1’ />
<Event id=’4.3 />

</EventsDealt>
</AnalysisClass>
…………………………………………..

</AnalysisModel>

Figure 12: XML Document representing Analysis Model of a Library System

The Analysis classes are traced to the design classes. The process is depicted in Figure 13

of Appendix.

Librarian

Interface

Authentication

Book

Member

Authentication

Issue-Return Interface

Authorization Interface

Issue-Return

Interface

Return

Issuance

Cancellation

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

179

From this, we can derive the design model of the Library System as shown in Figure 14 of

Appendix. The part of the design model is represented in XML as shown in Figure 15.
<?xml version="1.0"?>
<DesignModel>

<DesignClass>
<name>Display</name>
<TracedAnalysisClasses>

<analysisClass> Authorization-Interface
</analysisClass>
<analysisClass> Issue-Return-Interface
</analysisClass>

</ TracedAnalysisClasses >
</DesignClass>
………………………………………………..
<DesignClass>

<name>Transaction-Management</name>
<TracedAnalysisClasses>

<analysisClass>
Issuance
</analysisClass>
<analysisClass>
Return
</analysisClass>

</ TracedAnalysisClasses>
</DesignClass>

</DesignModel>

Figure 15: XML Document representing Design Model of a Library System

We now propose to package classes into components to generate the Component Model of

the Library System as shown in Figure 16.

It is a Component-Based Model-View-Controller Architecture. Part of a Component

Model of the Library System is represented in XML format in Figure 17.

<?xml version="1.0"?>
<ComponentModel>

<Component id=’01‘>
<name>Library-Interface </name>
<type>View</type>
<DesignClasses>

<class name=”Display”/>
<class name=”Keyboard”/>
<class name=”Librarian”/>

</DesignClasses>
</Component>
<Component id=’04‘>

<name>Transaction-Management</name>

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

180

<type> Controller </type>
<DesignClasses>

<class name=”Transaction-Manager”/>
</DesignClasses>
</Component>

</ComponentModel>

Figure 17: XML Document representing Component Model of a Library System

6. Conclusion

In this paper, we propose a framework for designing a system based on Component Based

Architecture. Here, we propose to achieve separation of concerns among these

components using Model-View-Controller design pattern. This would enable us building

components that are highly cohesive and less coupled with other components making

them easily replaceable and modifiable. Reusability of such components will be high as

the roles of the components are going to be well defined and non-overlapping.

References

[1] Cheesman J., Daniels J., UML Components, A simple process for specifying

component-based software, Addison Wesley, 2001

[2] Model Driven Architecture, A Technical Perspective.' doc. n. ab/2001-01-01, n.

ormsc/2001-07-01

[3] Meyer B. Applying ‘Design by Contract’. Computer, 25 (10), Oct. 1992, 40-52

[4] D’Souza, D. F. and Wills, A. C.: Objects, Components and Frameworks with

UML: the Catalysis Approach. Addison Wesley, USA, 1999.

[5] de Farias, C.R.G., Ferreira Pires, L. and van Sinderen, M.: A component-based

groupware development methodology. In Proceedings of the 4th Int. Enterprise

Distributed Object,Computing Conference (EDOC’00), pp. 204-213, 2000.

[6] Jacobson, I., Booch, G. and Rumbaugh, J. The unified software development

process. Addison Wesley, USA, 1999.

[7] Object Management Group UML Revision Task Force: OMG UML v. 1.3:

Revisions and Recommendations, 1999.

[8] Quartel, D.A.C., van Sinderen, M.J., and Ferreira Pires, L.: A model-based

approach to service creation. In Proceedings of the 7th International Workshop of

Future Trends in Distributed Computing (FTDCS’99), pp. 102-110, 1999.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

181

A
p

p
en

d
ix

M
em

b
er

B
o
o
k

P
er

si
st

en
t

-C
la

ss

L
ib

ra
ri

an

-I
n
te

rf
ac

e

Is
su

e-
R

et
u
rn

-

In
te

rf
ac

e
A

u
th

o
ri

za
ti

o
n

-I
n
te

rf
ac

e
<

<
 t

ra
ce

>
>

D
is

p
la

y
K

ey
b

o
ar

d
L

ib
ra

ri
an

C
an

ce
ll

at
io

n
A

u
th

en
ti

ca
ti

o
n

Is
su

an
ce

A
u
th

en
ti

ca
ti

o
n

Is
su

an
ce

R
et

u
rn

T
ra

n
sa

ct
io

n
-

M
an

ag
em

en
t

C
an

ce
ll

at
io

n

R
et

u
rn

F
ig

u
re

 1
3
:

A
n
al

y
si

s
C

la
ss

es
 T

ra
ce

d
 t

o
 D

es
ig

n
 C

la
ss

es

L
ib

ra
ry

-M
an

ag
er

D
is

p
la

y

K
ey

b
o
ar

d

L
ib

ra
ri

an
T

ra
n
sa

ct
io

n
-

M
an

ag
er

Is
su

an
ce

R
et

u
rn

M
em

b
er

B
o
o
k

P
er

si
st

en
t-

C
la

ss

A
u
th

en
ti

ca
ti

o
n

R
eg

is
tr

at
io

n
C

an
ce

l-

R
eg

is
tr

at
io

n

F
ig

u
re

 1
4
:

D
es

ig
n
 M

o
d
el

 o
f

L
ib

ra
ry

 S
y
st

emL
ib

ra
ry

-

M
an

ag
er

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

182

A
u
th

o
ri

ze
T

ra
n
sa

ct
io

n

<
<

C
o
n

tr
o
ll

er
>

>

Is
su

e_
R

et
u
rn

A
u
th

o
ri

za
ti

o
n

L
ib

ra
ry

In
te

rf
ac

e

D
is

p
la

y

K
ey

b
o
ar

d

L
ib

ra
ri

an

T
ra

n
sa

ct
io

n

M
em

b
er

-

M
an

ag
em

en
t

P
er

si
st

en
t-

C
la

ss

M
em

b
er

-M
an

a
g
er

M
em

b
er

B
o
o
k
M

an
ag

e
m

en
t

P
er

si
st

en
t-

C
la

ss

B
o
o
k

-M
an

ag
er

B
o
o
k

A
u
th

en
ti

ca
ti

o
n

R
eg

is
tr

at
io

n

C
an

ce
l-

R
eg

is
tr

at
io

n

F
ig

u
re

 1
6
:

C
o
m

p
o
n
en

t
M

o
d
el

 o
f

L
ib

ra
ry

 S
y
st

em
 (

M
V

C
 A

rc
h
it

ec
tu

re
)

<
<

C
o
n
tr

o
ll

er
>

>

T
ra

n
sa

ct
io

n

M
an

ag
em

en
t

T
ra

n
sa

ct
io

n
-

M
an

ag
er

Is
su

an
ce

R
et

u
rn

L
ib

ra
ry

-

M
an

ag
em

en
t

A
u
th

en
ti

ca
ti

o
n

T
ra

n
sa

ct
io

n

D
et

ai
ls

T
ra

n
sa

ct
io

n
<

<
M

o
d

el
>

>

<
<

V
ie

w
>

>

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

183

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

184

Composition and Reconciliation: Challenges and Possible Solutions to

Integrate Stakeholders’ Needs Together?
Stephen S. Yau and Zhaoji Chen

School of Computing and Informatics

Arizona State University

Tempe, AZ 85287-8809 USA

Email: {yau, zhaoji.chen}@asu.edu

 Today people increasingly rely on information systems, which often consist of software

systems running on various interconnected computing devices, for almost every aspect in

our lives. As stakeholders’ needs increase, systems become more error-prone.

Misunderstanding of various stakeholders’ needs, miscommunication among different

developers, and oversight of certain requirements can all be the causes for losses.

 New techniques are being developed to support effective and collaborative software

development for large-scale systems through composition of smaller, more manageable

units. For example, the emergence of service-based architecture offers developers new

opportunities to rapidly develop large-scale distributed information systems by

composing massively available services, which are independently developed, regardless

of the programming languages and platforms used to develop and run these services.

These approaches certainly help improve the quality of large-scale information systems

because the component units are easier to develop and test, and composition and reuse of

well tested components can greatly reduce developers’ workload. However, without

proper support, the composition approach may cause new problems while solving some

of the old ones. Even with simple robust components, when they need to collaboratively

provide certain functionality, the challenge is how we can address new playground for

shared objects while maintain their robustness. It is much more difficult to make all

stakeholders happy at the same time. There are three major challenges.

 First, to express their needs, different stakeholders may use their own vocabularies,

which are not standardized. For example, auditability requirement in one document and

non-repudiation and security audit requirements in another document are all about

collecting and keeping tamper proof records which can be used later to prevent users

from denying their usages. It is difficult to understand the requirements specified by

other parties using non-unified vocabularies. Misunderstanding of the requirements is a

major cause for errors.

 Secondly, composition can create unforeseen scenarios which are often missed. For

example, the London airport terrorist plot last year could make deadly explosives

through mixing several inert liquids, which appeared to be safe at security check all the

time. Similarly, some operations of software systems may be safe if only performed

within the component unit. But, they could cause devastating effects if combined with

operations from other units.

 Thirdly, since each of the stakeholders involved in collaborations has no prior

knowledge on what requirements have/have not been specified by others when we

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

185

address all stakeholders’ needs, some requirements may be requested more than once, or

may not be satisfied at the same time.

 In order to address these challenges in collaborative environments, the following

techniques may be promising. A logic-based specification approach together with a

domain specific ontology may provide unambiguous and interoperable specifications.

Then, various logic reasoning analysis techniques may be applied. Situation awareness

may be very effective in dealing with runtime composition in dynamic environments.

Combining these techniques with powerful negotiation algorithms, compromises among

stakeholders could be reached to reconcile possible conflicts.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

186

Requirements Engineering Practice in the Development of a

Bidding Decision Support System

Weicun Zhang
1
, Lin Zhang

2

1. Department of Automation

University of Science and Technology Beijing

 Beijing 100083, P.R.China

E-mail:weicunzhang@263.net

2. School of Automation

Beijing University of Aeronautics and Astronautics

Beijing 100084, P.R.China

Abstract: This paper presents a requirement engineering practice in the

development of a bidding decision support system which is useful for an

independent power provider in electricity market. The system comprises

eight subsystems: cost management, production management, forecast and

decision, local data acquisition, market data acquisition, settlement

management, bidding management and configuration management. The

practical experiences and lessons are summarized from the feedback control

perspectives.

Keywords: requirement engineering, electricity market, decision support system

1. INTRODUCTION

Many countries like Great Britain, United States, Australia, Norway etc., have introduced competition in

power industry, and established electricity markets. There are lots of studies on such an issue [1-3]. With

the introduction of electricity market, power industry is adopting e-business and its production mode will

be gradually changed from planning mechanism to market mechanism. The power industry of China is

also undergoing such reform. In some provinces, experimental markets have been put into trial use. To

adapt to the market situation, a power plant or power company needs to strengthen its production

management and cost management to get more benefits, meanwhile another way to increase income is to

optimise its bidding strategy. Accordingly, a bidding decision support system is needed for these power

providers. Generally speaking, a bidding decision support system should provide the decision maker the

following information: production information, cost information, markets information (market clearing

price information, power supply information and power demand information). Decision suggestions for all

types of competition markets are essential contents of the system. Currently five markets are considered:

real-time market, day-ahead market, forward contract market, automatic generation control (AGC) market

and reserve market.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

187

 In the following sections, we will first give a general description of the bidding decision support system.

Then we introduce the requirement engineering practice in the development of the software system with

an experience summary from the perspectives of feedback control. Finally we depict the results of the

application of the software system.

2. GENERAL DESCRIPTION OF THE SOFTWARE SYSTEM

2.1 Function Description

The goal of the bidding decision support system is to give the decision maker of an independent power

provider an assistant or an advisor in the electricity market. Generally speaking, the decision maker needs

to have a good command of the situation of the market, the production capability, the cost of generation.

To be specific, the system should present all kinds of candidate bidding schedules and corresponding

methodologies or indexes to the decision maker. Each schedule should also include the potential risk and

potential benefit. Thus, the bidding decision support system should comprise eight subsystems: local data

acquisition system (LDAS), market data acquisition system (MDAS), cost management system,

production management system, forecast and decision system, settlement system, bidding management

system and configuration management system. Figure 1 shows the functionalities of the system.

Figure 1 The function diagram of the bidding decision support system.

2.2 Data Flow and Logic Relations

From the point of view of data flow, the logic relation diagram of the software system is shown in Figure

2. First, the system gets basic local data of production and cost from distributed control system (DCS) and

management information system (MIS) and other related information systems, also gets market data from

open access same-time information system (OASIS). Second, the production management subsystem and

cost management subsystem process those basic data and output useful parameters (like cost function and

generation ability) to be used by market forecast and decision system. Finally, forecast and decision

subsystem give the expected market price and bidding scheme suggestions. Settlement subsystem is

interior for an independent power provider to check on the bill published by the market operator. Bidding

management subsystem is designed for supervisors to adjust and finally approve the biddings. Each

bidding scheme has its risk index and potential profit for reference. The functionalities of configuration

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

188

management include: user management, safety management and market rules management. For that the

power market may change some operation rules (like trading time periods 24 ,48 or 96), the configuration

management is needed to increase the adaptability of the bidding decision system.

Trade

Managemen

t

Production

Management

Cost

Management

Settlement

Forecasting &

Decision

LDAS

Electricity

Market

MDAS

Figure 2 The logic relation diagram of the system

2.3 Core Functions

The core functions of the system are market price forecasting and bidding decision making. We developed

4 forecasting algorithms including: Forecast algorithm based on AR (Autoregressive) model; Forecast

algorithm based on ARMA (Autoregressive Moving Average) model; Forecast algorithm based on ANN

(Artificial Neural Network) model and Forecast algorithm based on dynamic fuzzy system model[7]. For

decision making, we developed 3 schemes. They are: decision algorithm based on game theory [8];

decision algorithm based on demanded profit; decision algorithm based on break-even point. From input-

output point of view, the bidding decision process can be described in Figure 3.

Internal

Processing

Algorithms

Production

Capability

Costing

Information

Market

Information

Bidding

Schemes

Bidding Risk

Expected

Benefits

Input OutputProcess

Figure 3 IPO diagram of the bidding decision function

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

189

2.4 Development Environment

The software structures are based on J2EE standards and Browser/Server mode. The development tools

include JBuilder 9.0, Oracle 9i, and Rational ClearCase. The database server and application server are

running on operating system of True 64 UNIX. And the operating system on terminals is MS Windows

2000.

3. REQUIREMENTS ENGINEERING OF THE SOFTWARE DEVELOPMENT

3.1 General Description

Requirement engineering (RE) is a multi-disciplinary activity, deploying a variety of techniques and tools

at different stages of development and for different kinds of application domains [4]. A variety of

approaches have been suggested to manage and integrate different RE activities and products [5, 6].

The development process, especially the RE process of this bidding decision support system

is a little different from normal softwares. That is because we didn’t receive any commitment

before we started to develop the software. We just did it by our judgement of potential market

needs, And in the mid of development we fortunately got our first commitment contract from a

power plant. Before the contract was signed, there are four principal stages of RE, they are internal

design of requirement specification, prototyping software, technical clarification & discussion meetings,

requirement specification book. And after the contract was signed, there is one principal stage of RE, that

is requirement change management. The RE process can be described by Figure 4.

Internal design of requirement specification

Prototyping software

Technical clarification & discussion meetings

Confirmation of requirement specification

Requirement change management

Figure 4 The process of requirement engineering

From the point of view of feedback control, the RE process can be also described in Figure 5.

Requirement engineering is the “controller” in the software production process, which includes human

being’s intelligence, knowledge and relative tools to understand and express the stakeholder’s explicit or

inexplicit requirements. Some principles or methodologies, such as filtering, excitation and identification

are useful for reference in requirement engineering.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

190

RE Software

System

Stakeholders

Satisfaction

Stakeholders

Feedback

Specifica-

tions

Performance

Figure 5 The feedback structure for requirement engineering

3.2 Internal design of requirement specification

According to our understanding of electricity market and power plant, we conceive the functionalities and

data flows. Although a lot of changes had been made on the requirement specifications through the whole

process of the bidding decision support software development, the structure of its eight subsystems and

their logic relations remained the same as our initial design. The eight subsystems are: local data

acquisition, market data acquisition, cost management, production management, forecast and decision,

internal settlement, bidding management and configuration management.

3.3 Prototyping software system

After the accomplishment of internal design of requirement specifications, we started to develop the

prototype software of the conceived system. The prototype software system was focused on the human

machine interface (HMI) without database connection. That was the basic version of the software system.

The development environments were the same as the real system. The prototype software system was

mainly used for elicitation where there is a great deal of uncertainty and ambiguity about the requirements

of stakeholders, or where early feedback from stakeholders is needed. Prototype software system can also

be readily combined with other techniques, for instance by using a prototype to provoke discussion in a

group elicitation technique.

3.4 Technical clarification & discussion meetings

After potential customer was found, we held technical liaison meetings several times, to improve the

requirement specification and prototype system. Based on the prototype system, the customer gave many

suggestions about the human-machine interfaces and other functionalities. The focused issue is local data

acquisition. That was because that many local data had already been stored in different databases of

different information systems of the independent power provider (or power plant), like management

information system (also known as MIS), financial management information system (also known as

FMIS), distributed control system (also known as DCS), production management system, tele-

meter reading system (also known as TMR system) and supervisory control and data acquisition system

(also known as SCADA system). The difficulty also rested with that different software systems were

developed by different vendor and different database were adopted. There were of course many

overlapping of data definitions. Finally, we designed two kinds of interfaces for data acquisition. One way

is to collect data on human-machine interface. Another way is to use the gateway program to convert data

from existing databases to the database of the bidding decision support system.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

191

3.5 Confirmation of requirement specification

After the stakeholder was basically satisfied, we had the requirement specification checked and accepted

by the customer formally. This version of the requirement specification was a benchmark for later changes

management. Actually we especially designed a confirmation book according to the requirement

specification. In which, each specific functionality on each human-machine interface needs checks and

signatures of both software developer and stakeholder. Figure 6 gives an example of such kind of

confirmation forms.

Function Operation log management

Description Management of system operation log

Operations Generate modify delete print

Log content (Please check term by term)

Operator name

Access date

Access time

Computer name

System module name

Sub-module name

Customer Name

Signature_______________

Vendor Name

Signature_______________

Figure 6 An example of confirmation form of requirement specification

3.6 Requirement change management

We formulated specific criterion on requirement change management. Also, a requirement change form

was prepared. If there is any change of requirements after contract was signed, a copy of change form

should be filled by both sides with signatures. With the change form signature we wanted to control the

quantity of changes, because sometimes the customer put forward change demands ad libitum. After the

customer’s requirement changes had been confirmed, we started another process, which is software

change control. We formulated a procedure for software change control. There were mainly five steps for

software change control: proposal of change, appraisal of change, auditing of change, approval of change

and implementation of change.

3.7 Lessons and experiences

Sometimes the stakeholders requirements are explicit and specific, sometimes are inexplicit. The

requirement engineering process could be described as a feedback control system. Our goal is to make the

process (control system) stable, exact and quick. The key point lies in the “controller”, i.e. the requirement

engineering which comprises human intelligence and knowledge to understand the explicit and inexplicit

requirements of the stakeholder. Sometimes we need to filter their frequent changes in requirement

expression and linguistic ambiguity with the help of discussion meeting and prototype system, and

sometimes we need to elicit or excite their genuine requirements. This is similar to the principle of system

identification and control. The stakeholders usually don not care very much about the internal or

background processing algorithm, like market price forecasting algorithms and decision making

algorithms which plays the essential role in the bidding decision support system.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

192

4. CONCLUDING REMARKS

The development of the bidding decision support system had been finished on time. And the software

system is running well in some power plants. Although the economic benefit can not be evaluated up to

now because the electricity market is still in its trial use stage in China, what we can see is that the

software system can indeed provide reasonable bidding decisions under the trial use circumstances. And

the costing management of the power plant is more specific and legible than before. The key to the

success of the software development is that we noticed the importance of requirement engineering and

adopted some corresponding measures. In summary, we present our understandings of requirement

engineering from the viewpoint of feedback control, which may help improve the efficiency of

requirement engineering.

REFERENCES

[1] Schwepp F C et al, Spot Price of Electricity. Kluwer Academic Publishers, 1988

[2] Hung-po Chao et al, Designing Competitive Electricity Markets, Kluwer Academic Publishers, 1998

[3] Gerald B.Sheble, Computational Auction Mechanisms for Restructured Power Industry Operation,

Kluwer Academic Publishers, 1999

[4] Bashar Nuseibeh, Steve Easterbrook, Requirements Engineering: A Roadmap, "The Future of

Software Engineering" , Anthony Finkelstein (Ed.), ACM 2000.

[5] Jackson, M., Software Requirements and Specifications: A Lexicon of Practice, Principles and

Prejudices. Addison Wesley, 1995

[6] Aybüke Aurum, Claes. Wohlin (Eds.), Engineering and Managing Software Requirements, Springer,

2005

[7] Liu Hongjie, Wang Xiufeng, Zhang Weicun, and Xu. Guohua, Market clearing price forecasting based

on dynamic fuzzy system. Proceedings of 2002 Power System Technology, Vol.2. pp.890-896

[8] Shang Jincheng, Huang Yonghao, Zhang Weicun, et al. A model and algorithm of game theory based

bidding strategy for an independent power provider. Automation of Electric Power Systems, 2002,

26(9): pp.7-11.

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

193

Pre-Proceedings of the 14th Monterey Workshop on Innovations for Requirements Analysis:
From Stakeholders Needs to Formal Design

194

 195

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 1
Ft. Belvoir, Virginia

2. Dudley Knox Library 1
Naval Postgraduate School
Monterey, California

3. Dr. Joseph Olive 3
DARPA/ IPTO
Arlington, VA

4. Dr. Helen Gill 3

NSF/ Directorate for Computer and Information Science
Arlington, VA

5. Luqi 3

Naval Postgraduate School
Monterey, CA 4

6. Craig Martell 3

Naval Postgraduate School
Monterey, CA

7. George Dinolt 1

Naval Postgraduate School
Monterey, CA

